Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Srilatha Edupuganti is active.

Publication


Featured researches published by Srilatha Edupuganti.


Journal of Experimental Medicine | 2011

Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection

Jens Wrammert; Dimitrios G. Koutsonanos; Gui-Mei Li; Srilatha Edupuganti; Jianhua Sui; Michael Morrissey; Megan McCausland; Ioanna Skountzou; Mady Hornig; W. Ian Lipkin; Aneesh K. Mehta; Behzad Razavi; Carlos del Rio; Nai-Ying Zheng; Jane-Hwei Lee; Min Huang; Zahida Ali; Kaval Kaur; Sarah F. Andrews; Rama Rao Amara; Youliang Wang; Suman R. Das; Christopher D. O'Donnell; Jon W. Yewdell; Kanta Subbarao; Wayne A. Marasco; Mark Mulligan; Richard W. Compans; Rafi Ahmed; Patrick C. Wilson

Although scarce after annual influenza vaccination, B cells producing antibodies capable of neutralizing multiple influenza strains are abundant in humans infected with pandemic 2009 H1N1 influenza.


Immunity | 2008

Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines.

Joseph D. Miller; Robbert G. van der Most; Rama Akondy; John Glidewell; Sophia Albott; David Masopust; Kaja Murali-Krishna; Patryce L. Mahar; Srilatha Edupuganti; Susan Lalor; Stephanie Germon; Carlos del Rio; Mark J. Mulligan; Silvija I. Staprans; John D. Altman; Mark B. Feinberg; Rafi Ahmed

To explore the human T cell response to acute viral infection, we performed a longitudinal analysis of CD8(+) T cells responding to the live yellow fever virus and smallpox vaccines--two highly successful human vaccines. Our results show that both vaccines generated a brisk primary effector CD8(+) T cell response of substantial magnitude that could be readily quantitated with a simple set of four phenotypic markers. Secondly, the vaccine-induced T cell response was highly specific with minimal bystander effects. Thirdly, virus-specific CD8(+) T cells passed through an obligate effector phase, contracted more than 90% and gradually differentiated into long-lived memory cells. Finally, these memory cells were highly functional and underwent a memory differentiation program distinct from that described for human CD8(+) T cells specific for persistent viruses. These results provide a benchmark for CD8(+) T cell responses induced by two of the most effective vaccines ever developed.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Pandemic H1N1 influenza vaccine induces a recall response in humans that favors broadly cross-reactive memory B cells

Gui-Mei Li; Christopher Chiu; Jens Wrammert; Megan McCausland; Sarah F. Andrews; Nai-Ying Zheng; Jane-Hwei Lee; Min Huang; Xinyan Qu; Srilatha Edupuganti; Mark J. Mulligan; Suman R. Das; Jonathan W. Yewdell; Aneesh K. Mehta; Patrick C. Wilson; Rafi Ahmed

We have previously shown that broadly neutralizing antibodies reactive to the conserved stem region of the influenza virus hemagglutinin (HA) were generated in people infected with the 2009 pandemic H1N1 strain. Such antibodies are rarely seen in humans following infection or vaccination with seasonal influenza virus strains. However, the important question remained whether the inactivated 2009 pandemic H1N1 vaccine, like the infection, could also induce these broadly neutralizing antibodies. To address this question, we analyzed B-cell responses in 24 healthy adults immunized with the pandemic vaccine in 2009. In all cases, we found a rapid, predominantly IgG-producing vaccine-specific plasmablast response. Strikingly, the majority (25 of 28) of HA-specific monoclonal antibodies generated from the vaccine-specific plasmablasts neutralized more than one influenza strain and exhibited high levels of somatic hypermutation, suggesting they were derived from recall of B-cell memory. Indeed, memory B cells that recognized the 2009 pandemic H1N1 HA were detectable before vaccination not only in this cohort but also in samples obtained before the emergence of the pandemic strain. Three antibodies demonstrated extremely broad cross-reactivity and were found to bind the HA stem. Furthermore, one stem-reactive antibody recognized not only H1 and H5, but also H3 influenza viruses. This exceptional cross-reactivity indicates that antibodies capable of neutralizing most influenza subtypes might indeed be elicited by vaccination. The challenge now is to improve upon this result and design influenza vaccines that can elicit these broadly cross-reactive antibodies at sufficiently high levels to provide heterosubtypic protection.


Journal of Immunology | 2009

The Yellow Fever Virus Vaccine Induces a Broad and Polyfunctional Human Memory CD8+ T Cell Response

Rama Akondy; Nathan Monson; Joseph D. Miller; Srilatha Edupuganti; Dirk E. Teuwen; Hong Wu; Farah Quyyumi; Seema Garg; John D. Altman; Carlos del Rio; Harry L. Keyserling; Alexander Ploss; Charles M. Rice; Walter A. Orenstein; Mark J. Mulligan; Rafi Ahmed

The live yellow fever vaccine (YF-17D) offers a unique opportunity to study memory CD8+ T cell differentiation in humans following an acute viral infection. We have performed a comprehensive analysis of the virus-specific CD8+ T cell response using overlapping peptides spanning the entire viral genome. Our results showed that the YF-17D vaccine induces a broad CD8+ T cell response targeting several epitopes within each viral protein. We identified a dominant HLA-A2-restricted epitope in the NS4B protein and used tetramers specific for this epitope to track the CD8+ T cell response over a 2 year period. This longitudinal analysis showed the following. 1) Memory CD8+ T cells appear to pass through an effector phase and then gradually down-regulate expression of activation markers and effector molecules. 2) This effector phase was characterized by down-regulation of CD127, Bcl-2, CCR7, and CD45RA and was followed by a substantial contraction resulting in a pool of memory T cells that re-expressed CD127, Bcl-2, and CD45RA. 3) These memory cells were polyfunctional in terms of degranulation and production of the cytokines IFN-γ, TNF-α, IL-2, and MIP-1β. 4) The YF-17D-specific memory CD8+ T cells had a phenotype (CCR7−CD45RA+) that is typically associated with terminally differentiated cells with limited proliferative capacity (TEMRA). However, these cells exhibited robust proliferative potential showing that expression of CD45RA may not always associate with terminal differentiation and, in fact, may be an indicator of highly functional memory CD8+ T cells generated after acute viral infections.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus

Lalita Priyamvada; Kendra M. Quicke; William H. Hudson; Nattawat Onlamoon; Jaturong Sewatanon; Srilatha Edupuganti; Kovit Pattanapanyasat; Kulkanya Chokephaibulkit; Mark J. Mulligan; Patrick C. Wilson; Rafi Ahmed; Mehul S. Suthar; Jens Wrammert

Significance In this study, we address the issue of cross-reactivity between dengue virus (DENV) and Zika virus (ZIKV) by testing sera and plasmablast-derived monoclonal antibodies from dengue patients against ZIKV. We show that both acute and convalescent dengue sera potently bind and neutralize ZIKV and that this cross-reactivity is also evident at the monoclonal level. We also demonstrate in vitro antibody-dependent enhancement of ZIKV infection in the presence of dengue-induced antibodies. Our findings strongly suggest that preexisting dengue antibodies may modulate immune responses to ZIKV infection. These data are timely and highly relevant from a public health standpoint given that a majority of regions currently experiencing Zika virus epidemics are endemic for dengue. Zika virus (ZIKV) is an emerging mosquito-borne flavivirus of significant public health concern. ZIKV shares a high degree of sequence and structural homology compared with other flaviviruses, including dengue virus (DENV), resulting in immunological cross-reactivity. Improving our current understanding of the extent and characteristics of this immunological cross-reactivity is important, as ZIKV is presently circulating in areas that are highly endemic for dengue. To assess the magnitude and functional quality of cross-reactive immune responses between these closely related viruses, we tested acute and convalescent sera from nine Thai patients with PCR-confirmed DENV infection against ZIKV. All of the sera tested were cross-reactive with ZIKV, both in binding and in neutralization. To deconstruct the observed serum cross-reactivity in depth, we also characterized a panel of DENV-specific plasmablast-derived monoclonal antibodies (mAbs) for activity against ZIKV. Nearly half of the 47 DENV-reactive mAbs studied bound to both whole ZIKV virion and ZIKV lysate, of which a subset also neutralized ZIKV. In addition, both sera and mAbs from the dengue-infected patients enhanced ZIKV infection of Fc gamma receptor (FcγR)-bearing cells in vitro. Taken together, these findings suggest that preexisting immunity to DENV may impact protective immune responses against ZIKV. In addition, the extensive cross-reactivity may have implications for ZIKV virulence and disease severity in DENV-experienced populations.


The Journal of Infectious Diseases | 2013

Safety and Comparative Immunogenicity of an HIV-1 DNA Vaccine in Combination with Plasmid Interleukin 12 and Impact of Intramuscular Electroporation for Delivery

Spyros A. Kalams; Scott Parker; Marnie Elizaga; Barbara Metch; Srilatha Edupuganti; John Hural; Stephen C. De Rosa; Donald K. Carter; Kyle Rybczyk; Ian Frank; Jonathan D. Fuchs; Beryl A. Koblin; Denny H. Kim; Patrice Joseph; Michael C. Keefer; Lindsey R. Baden; John H. Eldridge; Jean D. Boyer; Adam Sherwat; Massimo Cardinali; Mary Allen; Michael Pensiero; Christopher Collett Butler; Amir S. Khan; Jian Yan; Niranjan Y. Sardesai; James G. Kublin; David B. Weiner

BACKGROUND DNA vaccines have been very poorly immunogenic in humans but have been an effective priming modality in prime-boost regimens. Methods to increase the immunogenicity of DNA vaccines are needed. METHODS HIV Vaccine Trials Network (HVTN) studies 070 and 080 were multicenter, randomized, clinical trials. The human immunodeficiency virus type 1 (HIV-1) PENNVAX®-B DNA vaccine (PV) is a mixture of 3 expression plasmids encoding HIV-1 Clade B Env, Gag, and Pol. The interleukin 12 (IL-12) DNA plasmid expresses human IL-12 proteins p35 and p40. Study subjects were healthy HIV-1-uninfected adults 18-50 years old. Four intramuscular vaccinations were given in HVTN 070, and 3 intramuscular vaccinations were followed by electroporation in HVTN 080. Cellular immune responses were measured by intracellular cytokine staining after stimulation with HIV-1 peptide pools. RESULTS Vaccination was safe and well tolerated. Administration of PV plus IL-12 with electroporation had a significant dose-sparing effect and provided immunogenicity superior to that observed in the trial without electroporation, despite fewer vaccinations. A total of 71.4% of individuals vaccinated with PV plus IL-12 plasmid with electroporation developed either a CD4(+) or CD8(+) T-cell response after the second vaccination, and 88.9% developed a CD4(+) or CD8(+) T-cell response after the third vaccination. CONCLUSIONS Use of electroporation after PV administration provided superior immunogenicity than delivery without electroporation. This study illustrates the power of combined DNA approaches to generate impressive immune responses in humans.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Induction of broadly cross-reactive antibody responses to the influenza HA stem region following H5N1 vaccination in humans

Ali H. Ellebedy; Florian Krammer; Gui-Mei Li; Matthew S. Miller; Christopher Chiu; Jens Wrammert; Cathy Y. Chang; Carl W. Davis; Megan McCausland; Rivka Elbein; Srilatha Edupuganti; Paul Spearman; Sarah F. Andrews; Patrick C. Wilson; Adolfo García-Sastre; Mark J. Mulligan; Aneesh K. Mehta; Peter Palese; Rafi Ahmed

Significance Vaccination is the most effective means of attaining protection against influenza viruses. However, the constantly evolving nature of influenza viruses enables them to escape preexisting immune surveillance, and thus thwarts public health efforts to control influenza annual epidemics and occasional pandemics. One solution is to elicit antibodies directed against highly conserved epitopes, such as those within the stem region of influenza HA, the principal target of virus-neutralizing antibody responses. This study shows that annual influenza vaccines induce antibody responses that are largely directed against the highly variable HA head region. In contrast, heterologous immunization with HA derived from influenza strains that are currently not circulating in humans (e.g. H5N1) can substantially increase HA stem-specific responses. The emergence of pandemic influenza viruses poses a major public health threat. Therefore, there is a need for a vaccine that can induce broadly cross-reactive antibodies that protect against seasonal as well as pandemic influenza strains. Human broadly neutralizing antibodies directed against highly conserved epitopes in the stem region of influenza virus HA have been recently characterized. However, it remains unknown what the baseline levels are of antibodies and memory B cells that are directed against these conserved epitopes. More importantly, it is also not known to what extent anti-HA stem B-cell responses get boosted in humans after seasonal influenza vaccination. In this study, we have addressed these two outstanding questions. Our data show that: (i) antibodies and memory B cells directed against the conserved HA stem region are prevalent in humans, but their levels are much lower than B-cell responses directed to variable epitopes in the HA head; (ii) current seasonal influenza vaccines are efficient in inducing B-cell responses to the variable HA head region but they fail to boost responses to the conserved HA stem region; and (iii) in striking contrast, immunization of humans with the avian influenza virus H5N1 induced broadly cross-reactive HA stem-specific antibodies. Taken together, our findings provide a potential vaccination strategy where heterologous influenza immunization could be used for increasing the levels of broadly neutralizing antibodies and for priming the human population to respond quickly to emerging pandemic influenza threats.


JAMA | 2014

Serological Responses to an Avian Influenza A/H7N9 Vaccine Mixed at the Point-of-Use With MF59 Adjuvant: A Randomized Clinical Trial

Mark J. Mulligan; David I. Bernstein; Patricia L. Winokur; Richard Rupp; Evan J. Anderson; Nadine Rouphael; Michelle Dickey; Jack T. Stapleton; Srilatha Edupuganti; Paul Spearman; Dilek Ince; Diana L. Noah; Heather Hill; Abbie R. Bellamy

IMPORTANCE Human infections with avian influenza A/H7N9 have resulted in high morbidity and mortality in China. OBJECTIVE To compare safety and immunogenicity of different doses of influenza A/Shanghai/2/13 (H7N9) vaccine mixed with or without the MF59 adjuvant. DESIGN, SETTING, AND PARTICIPANTS Multicenter, randomized, double-blind, phase 2 trial at 4 US sites enrolled 700 adults aged 19 to 64 years beginning in September 2013; 6-month follow-up was completed in May 2014. INTERVENTIONS The H7N9 inactivated virus vaccine was administered intramuscularly on days 0 and 21 at nominal doses of 3.75, 7.5, 15, or 45 µg of hemagglutinin (actual doses approximately 50% higher) with or without the MF59 adjuvant. A total 99, 100, or 101 participants were randomized to each group (7 groups; N = 700). MAIN OUTCOMES AND MEASURES Proportions achieving day 42 antibody titer of 40 or greater or seroconversion (a minimum 4-fold increase to titer ≥40) with the hemagglutination inhibition assay; vaccine-related serious adverse events through month 13; and solicited postvaccination symptoms through day 7. RESULTS Hemagglutination inhibition antibodies were minimal after participants received an unadjuvanted vaccine. After receiving 2 doses of H7N9 vaccine at a dosage of 3.75 µg plus the MF59 adjuvant, day 42 seroconversion occurred in 58 participants (59%; 95% CI, 48%-68%). The peak seroconversion occurred at day 29 in 62 participants (62%; 95% CI, 52%-72%). The day 42 geometric mean titer was 33.0 (95% CI, 24.7-44.1). Higher antigen doses were not associated with increased response. For the neutralizing antibody assays, after receiving 3.75 µg of H7N9 vaccine plus the MF59 adjuvant, day 42 seroconversion occurred in 81 participants (82%; 95% CI, 73%-89%). The day 42 geometric mean titer was 81.4 (95% CI, 66.6-99.5). There was no statistically significant difference in day 42 hemagglutination inhibition seroconversion after mixing adjuvant with either the first or both 15 µg doses (n = 34 [35%; 95% CI, 25%-45%] vs n = 47 [47%; 95% CI, 37%-58%], respectively; P = .10). Recent receipt of seasonal influenza vaccination and older age were associated with attenuated response. No vaccine-related serious adverse events occurred. Solicited postvaccination symptoms were generally mild with more local symptoms seen in participants who received the adjuvant. CONCLUSIONS AND RELEVANCE Point-of-use mixing and administration of 2 doses of H7N9 vaccine at the lowest tested antigen dose with MF59 adjuvant produced seroconversion in 59% of participants. Although these findings indicate potential value in this approach, the study is limited by the absence of antibody data beyond 42 days and the absence of clinical outcomes. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01938742.


Journal of Travel Medicine | 2009

Rethinking Typhoid Fever Vaccines: Implications for Travelers and People Living in Highly Endemic Areas

Jennifer A. Whitaker; Carlos Franco-Paredes; Carlos del Rio; Srilatha Edupuganti

Enteric (typhoid or paratyphoid) fever is a systemic infection caused by Salmonella enterica , including S enterica serotype Typhi ( S typhi ) and serotypes Paratyphi A, B, and C ( S paratyphi ). Humans are the only host for these pathogens, which are transmitted by fecal contamination of food and water. Salmonella typhi caused an estimated 22 million illnesses and 200,000 deaths, and S paratyphi caused 5.4 million illnesses worldwide during the year 2000. 1 The actual global burden of enteric fever is difficult to determine because many cases are unrecognized, particularly in young children who may have a nonspecific illness, 2–4 and it is not a notifiable disease in endemic countries. In addition, there are no specific clinical diagnostic criteria, and the laboratory techniques for diagnosis lack sensitivity and specificity. 5 According to the recently estimated global incidence, the highest concentration of typhoid fever is in Asia, especially in the Indian subcontinent (Table 1). 1 Southern Africa and Latin America also have a high disease burden (Table 1). View this table: Table 1 Crude typhoid fever incidence rates by region, 2000 Previously, S paratyphi was thought to have caused 10% of cases of enteric fever and a milder form of disease than S typhi. 6,7 However, recent reports suggest that these two pathogens cause similar diseases 8–10 and that there has been a disproportionate increase in the incidence of enteric fever caused by S paratyphi , with up to 50% of enteric fever cases caused by S paratyphi in some highly endemic areas of the world. 9,11–15 Enteric fever also affects short‐term and long‐term travelers bound to highly endemic areas. 16 Among the travel‐related cases, most occur in foreign‐born residents who visited friends or family in their country of origin. 17 Travel to the Indian subcontinent is associated with the highest risk of contracting enteric fever. 18–20 … Corresponding Author: Carlos Franco‐Paredes, MD, MPH, Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, 550 Peachtree Street, MOT, 7th Floor, TravelWell, Atlanta, GA 30308, USA. E‐mail: cfranco{at}sph.emory.edu


The Journal of Infectious Diseases | 2014

Specificity and 6-Month Durability of Immune Responses Induced by DNA and Recombinant Modified Vaccinia Ankara Vaccines Expressing HIV-1 Virus-Like Particles

Paul A. Goepfert; Marnie Elizaga; Kelly E. Seaton; Georgia D. Tomaras; David C. Montefiori; Alicia Sato; John Hural; Stephen DeRosa; Spyros A. Kalams; M. Juliana McElrath; Michael C. Keefer; Lindsey R. Baden; Javier R. Lama; Jorge Sanchez; Mark J. Mulligan; Susan Buchbinder; Scott M. Hammer; Beryl A. Koblin; Michael Pensiero; Christopher Collett Butler; Bernard Moss; Harriet L. Robinson; Yeycy Donastorg; Li Qin; Dale N. Lawrence; Massimo Cardinali; Jin Bae; Renée Holt; Huguette Redinger; Jan Johannessen

BACKGROUND Clade B DNA and recombinant modified vaccinia Ankara (MVA) vaccines producing virus-like particles displaying trimeric membrane-bound envelope glycoprotein (Env) were tested in a phase 2a trial in human immunodeficiency virus (HIV)-uninfected adults for safety, immunogenicity, and 6-month durability of immune responses. METHODS A total of 299 individuals received 2 doses of JS7 DNA vaccine and 2 doses of MVA/HIV62B at 0, 2, 4, and 6 months, respectively (the DDMM regimen); 3 doses of MVA/HIV62B at 0, 2, and 6 months (the MMM regimen); or placebo injections. RESULTS At peak response, 93.2% of the DDMM group and 98.4% of the MMM group had binding antibodies for Env. These binding antibodies were more frequent and of higher magnitude for the transmembrane subunit (gp41) than the receptor-binding subunit (gp120) of Env. For both regimens, response rates were higher for CD4(+) T cells (66.4% in the DDMM group and 43.1% in the MMM group) than for CD8(+) T cells (21.8% in the DDMM group and 14.9% in the MMM group). Responding CD4(+) and CD8(+) T cells were biased toward Gag, and >70% produced 2 or 3 of the 4 cytokines evaluated (ie, interferon γ, interleukin 2, tumor necrosis factor α, and granzyme B). Six months after vaccination, the magnitudes of antibodies and T-cell responses had decreased by <3-fold. CONCLUSIONS DDMM and MMM vaccinations with virus-like particle-expressing immunogens elicited durable antibody and T-cell responses.

Collaboration


Dive into the Srilatha Edupuganti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shital M. Patel

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge