Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lillian Moraes is active.

Publication


Featured researches published by Lillian Moraes.


Critical Care Medicine | 2013

Recruitment maneuvers modulate epithelial and endothelial cell response according to acute lung injury etiology.

Pedro L. Silva; Lillian Moraes; Raquel S. Santos; Cynthia S. Samary; Maíra Ramos; Cintia L. Santos; Marcelo M. Morales; Vera Luiza Capelozzi; Cristiane S. N. B. Garcia; Marcelo Gama de Abreu; Paolo Pelosi; John J. Marini; Patricia R.M. Rocco

Objective:To investigate the effects of the rate of increase in airway pressure and duration of lung recruitment maneuvers in experimental pulmonary and extrapulmonary acute lung injury. Design:Prospective, randomized, controlled experimental study. Settings:University research laboratory. Subjects:Fifty adult male Wistar rats. Interventions:Acute lung injury was induced by Escherichia coli lipopolysaccharide either intratracheally (pulmonary acute lung injury) or intraperitoneally (extrapulmonary acute lung injury). After 24 hours, animals were assigned to one of three different recruitment maneuvers, targeted to maximal airway pressure of 30 cm H2O: 1) continuous positive airway pressure for 30 seconds (CPAP-30); 2) stepwise airway pressure increase (5 cm H2O/step, 8.5 s at each step) over 51 seconds (STEP-51) to achieve a pressure-time product similar to that of CPAP-30; and 3) stepwise airway pressure increase (5 cm H2O/step, 5 s at each step) over 30 seconds with maximum pressure sustained for a further 30 seconds (STEP-30/30). Measurements and Main Results:All recruitment maneuvers reduced static lung elastance independent of acute lung injury etiology. In pulmonary acute lung injury, CPAP-30 yielded lower surfactant protein-B and higher type III procollagen expressions compared with STEP-30/30. In extrapulmonary acute lung injury, CPAP-30 and STEP-30/30 increased vascular cell adhesion molecule-1 expression, but the type of recruitment maneuver did not influence messenger ribonucleic acid expression of receptor for advanced glycation end products, surfactant protein-B, type III procollagen, and pro-caspase 3. Conclusions:CPAP-30 worsened markers of potential epithelial cell damage in pulmonary acute lung injury, whereas both CPAP-30 and STEP-30/30 yielded endothelial injury in extrapulmonary acute lung injury. In both acute lung injury groups, recruitment maneuvers improved respiratory mechanics, but stepwise recruitment maneuver without sustained airway pressure appeared to associate with less biological impact on lungs.


Critical Care Medicine | 2011

Impact of pressure profile and duration of recruitment maneuvers on morphofunctional and biochemical variables in experimental lung injury.

Pedro L. Silva; Lillian Moraes; Raquel S. Santos; Cynthia S. Samary; Debora S. Ornellas; Tatiana Maron-Gutierrez; Marcelo M. Morales; Felipe Saddy; Vera Luiza Capelozzi; Paolo Pelosi; John J. Marini; Marcelo Gama de Abreu; Patricia R.M. Rocco

Objective:To investigate the effects of the rate of airway pressure increase and duration of recruitment maneuvers on lung function and activation of inflammation, fibrogenesis, and apoptosis in experimental acute lung injury. Design:Prospective, randomized, controlled experimental study. Setting:University research laboratory. Subjects:Thirty-five Wistar rats submitted to acute lung injury induced by cecal ligation and puncture. Interventions:After 48 hrs, animals were randomly distributed into five groups (seven animals each): 1) nonrecruited (NR); 2) recruitment maneuvers (RMs) with continuous positive airway pressure (CPAP) for 15 secs (CPAP15); 3) RMs with CPAP for 30 secs (CPAP30); 4) RMs with stepwise increase in airway pressure (STEP) to targeted maximum within 15 secs (STEP15); and 5) RMs with STEP within 30 secs (STEP30). To perform STEP RMs, the ventilator was switched to a CPAP mode and positive end-expiratory pressure level was increased stepwise. At each step, airway pressure was held constant. RMs were targeted to 30 cm H2O. Animals were then ventilated for 1 hr with tidal volume of 6 mL/kg and positive end-expiratory pressure of 5 cm H2O. Measurements and Main Results:Blood gases, lung mechanics, histology (light and electronic microscopy), interleukin-6, caspase 3, and type 3 procollagen mRNA expressions in lung tissue. All RMs improved oxygenation and lung static elastance and reduced alveolar collapse compared to NR. STEP30 resulted in optimal performance, with: 1) improved lung static elastance vs. NR, CPAP15, and STEP15; 2) reduced alveolar-capillary membrane detachment and type 2 epithelial and endothelial cell injury scores vs. CPAP15 (p < .05); and 3) reduced gene expression of interleukin-6, type 3 procollagen, and caspase 3 in lung tissue vs. other RMs. Conclusions:Longer-duration RMs with slower airway pressure increase efficiently improved lung function, while minimizing the biological impact on lungs.


BJA: British Journal of Anaesthesia | 2016

Comparison of different degrees of variability in tidal volume to prevent deterioration of respiratory system elastance in experimental acute lung inflammation

T Kiss; Pedro Luis do Nascimento Silva; Robert Huhle; Lillian Moraes; Raquel S. Santos; Nathane S. Felix; Cintia L. Santos; Marcelo M. Morales; Vera L. Capelozzi; Michael Kasper; Paolo Pelosi; M. Gama de Abreu; Prm Rocco

BACKGROUND Variable ventilation improves respiratory function, but it is not known whether the amount of variability in tidal volume (VT) can be reduced in recruited lungs without a deterioration of respiratory system elastance. METHODS Acute lung inflammation was induced by intratracheal instillation of lipopolysaccharide in 35 Wistar rats. Twenty-eight animals were anaesthetized and ventilated in volume-controlled mode. Lungs were recruited by random variation of VT (mean 6 ml kg(-1), coefficient of variation 30%, normal distribution) for 30 min. Animals were randomly assigned to different amounts of VT variability (n=7 for 90 min per group): 30, 15, 7.5, or 0%. Lung function, diffuse alveolar damage, and gene expression of biological markers associated with cell mechanical stress, inflammation, and fibrogenesis were assessed. Seven animals were not ventilated and served as controls for post-mortem analyses. RESULTS A VT variability of 30%, but not 15, 7.5, or 0%, prevented deterioration of respiratory system elastance [Mean (SD) -7.5 (8.7%), P<0.05; 21.1 (9.6%), P<0.05; 43.3 (25.9), P<0.05; and 41.2 (16.4), P<0.05, respectively]. Diffuse alveolar damage was lower with a VT variability of 30% than with 0% and without ventilation, because of reduced oedema and haemorrhage. A VT variability of 30, 15, or 7.5% reduced the gene expression of amphiregulin, cytokine-induced neutrophil chemoattractant-1, and tumour necrosis factor α compared with a VT variability of 0%. CONCLUSIONS In this model of acute lung inflammation, a VT variability of 30%, compared with 15 and 7.5%, was necessary to avoid deterioration of respiratory system elastance and was not associated with lung histological damage.


Critical Care | 2013

Biphasic positive airway pressure minimizes biological impact on lung tissue in mild acute lung injury independent of etiology

Felipe Saddy; Lillian Moraes; Cintia L. Santos; Gisele Pena de Oliveira; Fernanda F. Cruz; Marcelo M. Morales; Vera Luiza Capelozzi; Marcelo Gama de Abreu; C. S. N. B. Garcia; Paolo Pelosi; Patricia Rieken Macedo Rocco

IntroductionBiphasic positive airway pressure (BIVENT) is a partial support mode that employs pressure-controlled, time-cycled ventilation set at two levels of continuous positive airway pressure with unrestricted spontaneous breathing. BIVENT can modulate inspiratory effort by modifying the frequency of controlled breaths. Nevertheless, the optimal amount of inspiratory effort to improve respiratory function while minimizing ventilator-associated lung injury during partial ventilatory assistance has not been determined. Furthermore, it is unclear whether the effects of partial ventilatory support depend on acute lung injury (ALI) etiology. This study aimed to investigate the impact of spontaneous and time-cycled control breaths during BIVENT on the lung and diaphragm in experimental pulmonary (p) and extrapulmonary (exp) ALI.MethodsThis was a prospective, randomized, controlled experimental study of 60 adult male Wistar rats. Mild ALI was induced by Escherichia coli lipopolysaccharide either intratracheally (ALIp) or intraperitoneally (ALIexp). After 24 hours, animals were anesthetized and further randomized as follows: (1) pressure-controlled ventilation (PCV) with tidal volume (Vt) = 6 ml/kg, respiratory rate = 100 breaths/min, PEEP = 5 cmH2O, and inspiratory-to-expiratory ratio (I:E) = 1:2; or (2) BIVENT with three spontaneous and time-cycled control breath modes (100, 75, and 50 breaths/min). BIVENT was set with two levels of CPAP (Phigh = 10 cmH2O and Plow = 5 cmH2O). Inspiratory time was kept constant (Thigh = 0.3 s).ResultsBIVENT was associated with reduced markers of inflammation, apoptosis, fibrogenesis, and epithelial and endothelial cell damage in lung tissue in both ALI models when compared to PCV. The inspiratory effort during spontaneous breaths increased during BIVENT-50 in both ALI models. In ALIp, alveolar collapse was higher in BIVENT-100 than PCV, but decreased during BIVENT-50, and diaphragmatic injury was lower during BIVENT-50 compared to PCV and BIVENT-100. In ALIexp, alveolar collapse during BIVENT-100 and BIVENT-75 was comparable to PCV, while decreasing with BIVENT-50, and diaphragmatic injury increased during BIVENT-50.ConclusionsIn mild ALI, BIVENT had a lower biological impact on lung tissue compared to PCV. In contrast, the response of atelectasis and diaphragmatic injury to BIVENT differed according to the rate of spontaneous/controlled breaths and ALI etiology.


Anesthesiology | 2015

Modulation of stress versus time product during mechanical ventilation influences inflammation as well as alveolar epithelial and endothelial response in rats.

Peter M. Spieth; Pedro L. Silva; Cristiane S. N. B. Garcia; Debora S. Ornellas; Cynthia S. Samary; Lillian Moraes; Maira Bentes; Marcelo M. Morales; Michael Kasper; Andreas Güldner; Robert Huhle; Thea Koch; Paolo Pelosi; Marcelo Gama de Abreu; Patricia R.M. Rocco

Background:Mechanical ventilation can lead to lung biotrauma when mechanical stress exceeds safety thresholds. The authors investigated whether the duration of mechanical stress, that is, the impact of a stress versus time product (STP), influences biotrauma. The authors hypothesized that higher STP levels are associated with increased inflammation and with alveolar epithelial and endothelial cell injury. Methods:In 46 rats, Escherichia coli lipopolysaccharide (acute lung inflammation) or saline (control) was administered intratracheally. Both groups were protectively ventilated with inspiratory-to-expiratory ratios 1:2, 1:1, or 2:1 (n = 12 each), corresponding to low, middle, and high STP levels (STPlow, STPmid, and STPhigh, respectively). The remaining 10 animals were not mechanically ventilated. Results:In animals with mild acute lung inflammation, but not in controls: (1) messenger RNA expression of interleukin-6 was higher in STPhigh (28.1 ± 13.6; mean ± SD) and STPlow (28.9 ± 16.0) versus STPmid (7.4 ± 7.5) (P < 0.05); (2) expression of the receptor for advanced glycation end-products was increased in STPhigh (3.6 ± 1.6) versus STPlow (2.3 ± 1.1) (P < 0.05); (3) alveolar edema was decreased in STPmid (0 [0 to 0]; median, Q1 to Q3) compared with STPhigh (0.8 [0.6 to 1]) (P < 0.05); and (4) expressions of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 were higher in STPlow (3.0 ± 1.8) versus STPhigh (1.2 ± 0.5) and STPmid (1.4 ± 0.7) (P < 0.05), respectively. Conclusions:In the mild acute lung inflammation model used herein, mechanical ventilation with inspiratory-to-expiratory of 1:1 (STPmid) minimized lung damage, whereas STPhigh increased the gene expression of biological markers associated with inflammation and alveolar epithelial cell injury and STPlow increased markers of endothelial cell damage.


Critical Care | 2014

Effects of sigh during pressure control and pressure support ventilation in pulmonary and extrapulmonary mild acute lung injury

Lillian Moraes; Cintia L. Santos; Raquel S. Santos; Fernanda F. Cruz; Felipe Saddy; Marcelo M. Morales; Vera Luiza Capelozzi; Pedro L. Silva; Marcelo Gama de Abreu; Cristiane S. N. B. Garcia; Paolo Pelosi; Patricia Rieken Macedo Rocco

IntroductionSigh improves oxygenation and lung mechanics during pressure control ventilation (PCV) and pressure support ventilation (PSV) in patients with acute respiratory distress syndrome. However, so far, no study has evaluated the biological impact of sigh during PCV or PSV on the lung and distal organs in experimental pulmonary (p) and extrapulmonary (exp) mild acute lung injury (ALI).MethodsIn 48 Wistar rats, ALI was induced by Escherichia coli lipopolysaccharide either intratracheally (ALIp) or intraperitoneally (ALIexp). After 24 hours, animals were anesthetized and mechanically ventilated with PCV or PSV with a tidal volume of 6 mL/kg, FiO2 = 0.4, and PEEP = 5 cmH2O for 1 hour. Both ventilator strategies were then randomly assigned to receive periodic sighs (10 sighs/hour, Sigh) or not (non-Sigh, NS). Ventilatory and mechanical parameters, arterial blood gases, lung histology, interleukin (IL)-1β, IL-6, caspase-3, and type III procollagen (PCIII) mRNA expression in lung tissue, and number of apoptotic cells in lung, liver, and kidney specimens were analyzed.ResultsIn both ALI etiologies: (1) PCV-Sigh and PSV-Sigh reduced transpulmonary pressure, and (2) PSV-Sigh reduced the respiratory drive compared to PSV-NS. In ALIp: (1) PCV-Sigh and PSV-Sigh decreased alveolar collapse as well as IL-1β, IL-6, caspase-3, and PCIII expressions in lung tissue, (2) PCV-Sigh increased alveolar-capillary membrane and endothelial cell damage, and (3) abnormal myofibril with Z-disk edema was greater in PCV-NS than PSV-NS. In ALIexp: (1) PSV-Sigh reduced alveolar collapse, but led to damage to alveolar-capillary membrane, as well as type II epithelial and endothelial cells, (2) PCV-Sigh and PSV-Sigh increased IL-1β, IL-6, caspase-3, and PCIII expressions, and (3) PCV-Sigh increased the number of apoptotic cells in the lung compared to PCV-NS.ConclusionsIn these models of mild ALIp and ALIexp, sigh reduced alveolar collapse and transpulmonary pressures during both PCV and PSV; however, improved lung protection only during PSV in ALIp.


Critical Care Medicine | 2016

Lung Functional and Biologic Responses to Variable Ventilation in Experimental Pulmonary and Extrapulmonary Acute Respiratory Distress Syndrome

Cynthia S. Samary; Lillian Moraes; Cintia L. Santos; Robert Huhle; Raquel S. Santos; Debora S. Ornellas; Nathane S. Felix; Vera Luiza Capelozzi; Alberto Schanaider; Paolo Pelosi; Marcelo Gama de Abreu; Patricia R.M. Rocco; Pedro L. Silva

Objectives: The biologic effects of variable ventilation may depend on the etiology of acute respiratory distress syndrome. We compared variable and conventional ventilation in experimental pulmonary and extrapulmonary acute respiratory distress syndrome. Design: Prospective, randomized, controlled experimental study. Settings: University research laboratory. Subjects: Twenty-four Wistar rats. Interventions: Acute respiratory distress syndrome was induced by Escherichia coli lipopolysaccharide administered intratracheally (pulmonary acute respiratory distress syndrome, n = 12) or intraperitoneally (extrapulmonary acute respiratory distress syndrome, n = 12). After 24 hours, animals were randomly assigned to receive conventional (volume-controlled ventilation, n = 6) or variable ventilation (n = 6). Nonventilated animals (n = 4 per etiology) were used for comparison of diffuse alveolar damage, E-cadherin, and molecular biology variables. Variable ventilation was applied on a breath-to-breath basis as a sequence of randomly generated tidal volume values (n = 600; mean tidal volume = 6 mL/kg), with a 30% coefficient of variation (normal distribution). After randomization, animals were ventilated for 1 hour and lungs were removed for histology and molecular biology analysis. Measurements and Main Results: Variable ventilation improved oxygenation and reduced lung elastance compared with volume-controlled ventilation in both acute respiratory distress syndrome etiologies. In pulmonary acute respiratory distress syndrome, but not in extrapulmonary acute respiratory distress syndrome, variable ventilation 1) decreased total diffuse alveolar damage (median [interquartile range]: volume-controlled ventilation, 12 [11–17] vs variable ventilation, 9 [8–10]; p < 0.01), interleukin-6 expression (volume-controlled ventilation, 21.5 [18.3–23.3] vs variable ventilation, 5.6 [4.6–12.1]; p < 0.001), and angiopoietin-2/angiopoietin-1 ratio (volume-controlled ventilation, 2.0 [1.3–2.1] vs variable ventilation, 0.7 [0.6–1.4]; p < 0.05) and increased relative angiopoietin-1 expression (volume-controlled ventilation, 0.3 [0.2–0.5] vs variable ventilation, 0.8 [0.5–1.3]; p < 0.01). In extrapulmonary acute respiratory distress syndrome, only volume-controlled ventilation increased vascular cell adhesion molecule-1 messenger RNA expression (volume-controlled ventilation, 7.7 [5.7–18.6] vs nonventilated, 0.9 [0.7–1.3]; p < 0.05). E-cadherin expression in lung tissue was reduced in volume-controlled ventilation compared with nonventilated regardless of acute respiratory distress syndrome etiology. In pulmonary acute respiratory distress syndrome, E-cadherin expression was similar in volume-controlled ventilation and variable ventilation; in extrapulmonary acute respiratory distress syndrome, however, it was higher in variable ventilation than in volume-controlled ventilation. Conclusions: Variable ventilation improved lung function in both pulmonary acute respiratory distress syndrome and extrapulmonary acute respiratory distress syndrome. Variable ventilation led to more pronounced beneficial effects in biologic marker expressions in pulmonary acute respiratory distress syndrome compared with extrapulmonary acute respiratory distress syndrome but preserved E-cadherin in lung tissue only in extrapulmonary acute respiratory distress syndrome, thus suggesting lower damage to epithelial cells.


Anesthesia & Analgesia | 2016

Fast Versus Slow Recruitment Maneuver at Different Degrees of Acute Lung Inflammation Induced by Experimental Sepsis.

Raquel S. Santos; Lillian Moraes; Cynthia S. Samary; Cintia L. Santos; Maíra Ramos; Ana P. Vasconcellos; Lucas Felipe Bastos Horta; Marcelo M. Morales; Vera Luiza Capelozzi; Cristiane S. N. B. Garcia; John J. Marini; Marcelo Gama de Abreu; Paolo Pelosi; Pedro L. Silva; Patricia R.M. Rocco

BACKGROUND:Large tidal volume (VT) breaths or “recruitment maneuvers” (RMs) are used commonly to open collapsed lungs, but their effectiveness may depend on how the RM is delivered. We hypothesized that a stepped approach to RM delivery (“slow” RM) compared with a nonstepped (“fast” RM), when followed by decremental positive end-expiratory pressure (PEEP) titration to lowest dynamic elastance, would (1) yield a more homogeneous inflation of the lungs, thus reducing the PEEP obtained during post-RM titration; (2) produce less lung morphofunctional injury, regardless of the severity of sepsis-induced acute lung inflammation; and (3) result in less biological damage in severe, but not in moderate, acute lung inflammation. METHODS:Sepsis was induced by cecal ligation and puncture surgery in 51 Wistar rats. After 48 hours, animals were anesthetized, mechanically ventilated (VT = 6 mL/kg), and stratified by PO2/fraction of inspired oxygen ratio into moderate (≥300) and severe (<300) acute lung inflammation groups. Each group was then subdivided randomly into 3 subgroups: (1) nonrecruited; (2) RM with continuous positive airway pressure (30 cm H2O for 30 seconds; CPAPRM or fast RM); and (3) RM with stepwise airway pressure increase (5 cm H2O/step, 8.5 seconds/step, 6 steps, 51 seconds; STEPRM or slow RM), with a maximum pressure hold for 10 seconds. All animals underwent decremental PEEP titration to determine the level of PEEP required to optimize dynamic compliance after RM and were then ventilated for 60 minutes with VT = 6 mL/kg, respiratory rate = 80 bpm, fraction of inspired oxygen = 0.4, and the newly adjusted PEEP for each animal. Respiratory mechanics, hemodynamics, and arterial blood gases were measured before and at the end of 60-minute mechanical ventilation. Lung histology and biological markers of inflammation and damage inflicted to endothelial cells were evaluated at the end of the 60-minute mechanical ventilation. RESULTS:Respiratory system mean airway pressure was lower in STEPRM than that in CPAPRM. The total RM time was greater, and the RM rise angle was lower in STEPRM than that in CPAPRM. In both moderate and severe acute lung inflammation groups, STEPRM reduced total diffuse alveolar damage score compared with the score in nonrecruited rats. In moderate acute lung inflammation, STEPRM rats compared with CPAPRM rats had less endothelial cell damage and angiopoietin (Ang)-2 expression. In severe acute lung inflammation, STEPRM compared with CPAPRM reduced hyperinflation, endothelial cell damage, Ang-2, and intercellular adhesion molecule-1 expressions. RM rise angle correlated with Ang-2 expression. CONCLUSIONS:Compared with CPAPRM, STEPRM reduced biological markers associated with endothelial cell damage and ultrastructural endothelial cell injury in both moderate and severe sepsis-induced acute lung inflammation.


Anesthesiology | 2018

Biologic Impact of Mechanical Power at High and Low Tidal Volumes in Experimental Mild Acute Respiratory Distress Syndrome.

Raquel S. Santos; Lígia de Albuquerque Maia; Milena V. de Oliveira; Cintia L. Santos; Lillian Moraes; Eliete F. Pinto; Cynthia S. Samary; Joana A. Machado; Anna Carolinna Carvalho; Marcos Vinícius de Souza Fernandes; Vanessa Martins; Vera Luiza Capelozzi; Marcelo M. Morales; Thea Koch; Marcelo Gama de Abreu; Paolo Pelosi; Pedro Luis do Nascimento Silva; Patricia R.M. Rocco

Background: The authors hypothesized that low tidal volume (VT) would minimize ventilator-induced lung injury regardless of the degree of mechanical power. The authors investigated the impact of power, obtained by different combinations of VT and respiratory rate (RR), on ventilator-induced lung injury in experimental mild acute respiratory distress syndrome (ARDS). Methods: Forty Wistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24 h, 32 rats were randomly assigned to be mechanically ventilated (2 h) with a combination of different VT (6 ml/kg and 11 ml/kg) and RR that resulted in low and high power. Power was calculated as energy (&Dgr;P,L2/E,L) × RR (&Dgr;P,L = transpulmonary driving pressure; E,L = lung elastance), and was threefold higher in high than in low power groups. Eight rats were not mechanically ventilated and used for molecular biology analysis. Results: Diffuse alveolar damage score, which represents the severity of edema, atelectasis, and overdistension, was increased in high VT compared to low VT, in both low (low VT: 11 [9 to 14], high VT: 18 [15 to 20]) and high (low VT: 19 [16 to 25], high VT: 29 [27 to 30]) power groups. At high VT, interleukin-6 and amphiregulin expressions were higher in high-power than in low-power groups. At high power, amphiregulin and club cell protein 16 expressions were higher in high VT than in low VT. Mechanical energy and power correlated well with diffuse alveolar damage score and interleukin-6, amphiregulin, and club cell protein 16 expression. Conclusions: In experimental mild ARDS, even at low VT, high mechanical power promoted ventilator-induced lung injury. To minimize ventilator-induced lung injury, low VT should be combined with low power.


Frontiers in Physiology | 2017

Variable Ventilation Improved Respiratory System Mechanics and Ameliorated Pulmonary Damage in a Rat Model of Lung Ischemia-Reperfusion

Andre Soluri-Martins; Lillian Moraes; Raquel S. Santos; Cintia L. Santos; Robert Huhle; Vera Luiza Capelozzi; Paolo Pelosi; Pedro L. Silva; Marcelo Gama de Abreu; Patricia R.M. Rocco

Lung ischemia-reperfusion injury remains a major complication after lung transplantation. Variable ventilation (VV) has been shown to improve respiratory function and reduce pulmonary histological damage compared to protective volume-controlled ventilation (VCV) in different models of lung injury induced by endotoxin, surfactant depletion by saline lavage, and hydrochloric acid. However, no study has compared the biological impact of VV vs. VCV in lung ischemia-reperfusion injury, which has a complex pathophysiology different from that of other experimental models. Thirty-six animals were randomly assigned to one of two groups: (1) ischemia-reperfusion (IR), in which the left pulmonary hilum was completely occluded and released after 30 min; and (2) Sham, in which animals underwent the same surgical manipulation but without hilar clamping. Immediately after surgery, the left (IR-injured) and right (contralateral) lungs from 6 animals per group were removed, and served as non-ventilated group (NV) for molecular biology analysis. IR and Sham groups were further randomized to one of two ventilation strategies: VCV (n = 6/group) [tidal volume (VT) = 6 mL/kg, positive end-expiratory pressure (PEEP) = 2 cmH2O, fraction of inspired oxygen (FiO2) = 0.4]; or VV, which was applied on a breath-to-breath basis as a sequence of randomly generated VT values (n = 1200; mean VT = 6 mL/kg), with a 30% coefficient of variation. After 5 min of ventilation and at the end of a 2-h period (Final), respiratory system mechanics and arterial blood gases were measured. At Final, lungs were removed for histological and molecular biology analyses. Respiratory system elastance and alveolar collapse were lower in VCV than VV (mean ± SD, VCV 3.6 ± 1.3 cmH20/ml and 2.0 ± 0.8 cmH20/ml, p = 0.005; median [interquartile range], VCV 20.4% [7.9–33.1] and VV 5.4% [3.1–8.8], p = 0.04, respectively). In left lungs of IR animals, VCV increased the expression of interleukin-6 and intercellular adhesion molecule-1 compared to NV, with no significant differences between VV and NV. Compared to VCV, VV increased the expression of surfactant protein-D, suggesting protection from type II epithelial cell damage. In conclusion, in this experimental lung ischemia-reperfusion model, VV improved respiratory system elastance and reduced lung damage compared to VCV.

Collaboration


Dive into the Lillian Moraes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cintia L. Santos

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Marcelo Gama de Abreu

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Marcelo M. Morales

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Patricia R.M. Rocco

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Raquel S. Santos

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Pedro L. Silva

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cynthia S. Samary

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Pedro Luis do Nascimento Silva

Federal University of Rio de Janeiro

View shared research outputs
Researchain Logo
Decentralizing Knowledge