Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liming Milbauer is active.

Publication


Featured researches published by Liming Milbauer.


Blood | 2014

Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease

John D. Belcher; Chunsheng Chen; Julia Nguyen; Liming Milbauer; Fuad Abdulla; Abdu I. Alayash; Ann Smith; Karl A. Nath; Robert P. Hebbel; Gregory M. Vercellotti

Treatment of sickle cell disease (SCD) is hampered by incomplete understanding of pathways linking hemolysis to vaso-occlusion. We investigated these pathways in transgenic sickle mice. Infusion of hemoglobin or heme triggered vaso-occlusion in sickle, but not normal, mice. Methemoglobin, but not heme-stabilized cyanomethemoglobin, induced vaso-occlusion, indicating heme liberation is necessary. In corroboration, hemoglobin-induced vaso-occlusion was blocked by the methemoglobin reducing agent methylene blue, haptoglobin, or the heme-binding protein hemopexin. Untreated HbSS mice, but not HbAA mice, exhibited ∼10% vaso-occlusion in steady state that was inhibited by haptoglobin or hemopexin infusion. Antibody blockade of adhesion molecules P-selectin, von Willebrand factor (VWF), E-selectin, vascular cell adhesion molecule 1, intercellular adhesion molecule 1, platelet endothelial cell (EC) adhesion molecule 1, α4β1, or αVβ3 integrin prevented vaso-occlusion. Heme rapidly (5 minutes) mobilized Weibel-Palade body (WPB) P-selectin and VWF onto EC and vessel wall surfaces and activated EC nuclear factor κB (NF-κB). This was mediated by TLR4 as TAK-242 blocked WPB degranulation, NF-κB activation, vaso-occlusion, leukocyte rolling/adhesion, and heme lethality. TLR4(-/-) mice transplanted with TLR4(+/+) sickle bone marrow exhibited no heme-induced vaso-occlusion. The TLR4 agonist lipopolysaccharide (LPS) activated ECs and triggered vaso-occlusion that was inhibited by TAK-242, linking hemolysis- and infection-induced vaso-occlusive crises to TLR4 signaling. Heme and LPS failed to activate VWF and NF-κB in TLR4(-/-) ECs. Anti-LPS immunoglobulin G blocked LPS-induced, but not heme-induced, vaso-occlusion, illustrating LPS-independent TLR4 signaling by heme. Inhibition of protein kinase C, NADPH oxidase, or antioxidant treatment blocked heme-mediated stasis, WPB degranulation, and oxidant production. We conclude that intravascular hemolysis in SCD releases heme that activates endothelial TLR4 signaling leading to WPB degranulation, NF-κB activation, and vaso-occlusion.


Translational Research | 2010

Nuclear factor-kappa B (NFκB) component p50 in blood mononuclear cells regulates endothelial tissue factor expression in sickle transgenic mice: implications for the coagulopathy of sickle cell disease

Rahn Kollander; Anna Solovey; Liming Milbauer; Fuad Abdulla; Robert J. Kelm; Robert P. Hebbel

Sickle cell anemia is accompanied by the activation of coagulation and thrombosis. We have studied the abnormal expression of tissue factor (TF) by the pulmonary vein endothelium of the mild-phenotype NY1DD sickle transgenic. As detected by immunofluorescence microscopy, this occurs only after the NY1DD mouse is exposed to hypoxia/reoxygenation (H/R), which actually causes ischemia/reperfusion in the sickle cell disease-but not the normal-mouse model. We tested the hypothesis that the nuclear factor-kappa B (NFkappaB)-activating inflammation that develops in post-H/R NY1DD mice is responsible for this phenotype switch. Various NFkappaB inhibitors (including p50-specific andrographolide) demonstrated that endothelial TF positivity is NFkappaB dependent. Several systemic inflammatory stimulators (tumor necrosis factor [TNFalpha], lipopolysaccharide, thioglycollate, and carageenan) given to control mice showed that the inflammatory promotion of TF expression by only pulmonary vein endothelium is not specific to the sickle cell disease model. We bred the NFkappaB(p50)-/- state into the NY1DD mouse. Combined with marrow transplantation, this allowed the creation of NY1DD mice that were NFkappaB(p50)-/- only in peripheral blood cells (and marrow) versus only in vessel walls (and tissues). This process revealed that endothelial TF expression in the NY1DD mouse is highly dependent on NFkappaB(p50) in peripheral blood mononuclear cells-but not in the vessel wall. In confirmation, the infusion of post-H/R sickle mouse blood mononuclear cells into naïve NY1DD mice stimulated endothelial TF expression; the infusion of such cells from unstimulated sickle cell disease mice at ambient air did not stimulate TF expression. We conclude that peripheral blood mononuclear cells indirectly promote endothelial TF expression via a NFkappaB(p50)-dependent mechanism. This approach may be relevant to the role of coagulopathy in clinical sickle cell disease.


American Journal of Hematology | 2009

Endothelial nitric oxide synthase and nitric oxide regulate endothelial tissue factor expression in vivo in the sickle transgenic mouse

Anna Solovey; Rahn Kollander; Liming Milbauer; Fuad Abdulla; Yingie Chen; Robert J. Kelm; Robert P. Hebbel

Activation of the coagulation system is a characteristic feature of sickle cell anemia, which also includes clinical thrombosis. The sickle transgenic mouse abnormally expresses tissue factor (TF) on the pulmonary vein endothelium. Knowing that this aberrancy is stimulated by inflammation, we sought to determine whether nitric oxide (NO) contributes to regulation of endothelial TF expression in the sickle mouse model. We used the NY1DD sickle mouse, which exhibits a low‐TF to high‐TF phenotype switch on exposure to hypoxia/reoxygenation. Manipulations of NO biology, such as breathing NO or addition of arginine or L‐NAME (N‐nitro‐L‐arginine‐methyl‐ester) to the diet, caused significant modulations of TF expression. This was also seen in hBERK1 sickle mice, which have a different genetic background and already have high‐TF even at ambient air. Study of NY1DD animals bred to overexpress endothelial nitric oxide synthase (eNOS; eNOS‐Tg) or to have an eNOS knockout state (one eNOS−/− animal and several eNOS+/− animals) demonstrated that eNOS modulates endothelial TF expression in vivo by down‐regulating it. Thus, the biodeficiency of NO characteristic of patients with sickle cell anemia may heighten risk for activation of the coagulation system. Am. J. Hematol., 2010.


British Journal of Cancer | 2007

Systemic inhibition of tumour angiogenesis by endothelial cell-based gene therapy

Arkadiusz Z. Dudek; Vidya Bodempudi; B. W. Welsh; P. Jasinski; Robert J. Griffin; Liming Milbauer; Robert P. Hebbel

Angiogenesis and post-natal vasculogenesis are two processes involved in the formation of new vessels, and both are essential for tumour growth and metastases. We isolated endothelial cells from human blood mononuclear cells by selective culture. These blood outgrowth cells expressed endothelial cell markers and responded correctly to functional assays. To evaluate the potential of blood outgrowth endothelial cells (BOECs) to construct functional vessels in vivo, NOD-SCID mice were implanted with Lewis lung carcinoma cells subcutaneously (s.c.). Blood outgrowth endothelial cells were then injected through the tail vein. Initial distribution of these cells occurred throughout the lung, liver, spleen, and tumour vessels, but they were only found in the spleen, liver, and tumour tissue 48 h after injection. By day 24, they were mainly found in the tumour vasculature. Tumour vessel counts were also increased in mice receiving BOEC injections as compared to saline injections. We engineered BOECs to deliver an angiogenic inhibitor directly to tumour endothelium by transducing them with the gene for human endostatin. These cells maintained an endothelial phenotype and decreased tumour vascularisation and tumour volume in mice. We conclude that BOECs have the potential for tumour-specific delivery of cancer gene therapy.


BMC Medicine | 2011

Differential endothelial cell gene expression by African Americans versus Caucasian Americans: a possible contribution to health disparity in vascular disease and cancer.

Peng Wei; Liming Milbauer; Judy Enenstein; Julia Nguyen; Wei Pan; Robert P. Hebbel

BackgroundHealth disparities and the high prevalence of cardiovascular disease continue to be perplexing worldwide health challenges. This study addresses the possibility that genetic differences affecting the biology of the vascular endothelium could be a factor contributing to the increased burden of cardiovascular disease and cancer among African Americans (AA) compared to Caucasian Americans (CA).MethodsFrom self-identified, healthy, 20 to 29-year-old AA (n = 21) and CA (n = 17), we established cultures of blood outgrowth endothelial cells (BOEC) and applied microarray profiling. BOEC have never been exposed to in vivo influences, and their gene expression reflects culture conditions (meticulously controlled) and donor genetics. Significance Analysis of Microarray identified differential expression of single genes. Gene Set Enrichment Analysis examined expression of pre-determined gene sets that survey nine biological systems relevant to endothelial biology.ResultsAt the highly stringent threshold of False Discovery Rate (FDR) = 0, 31 single genes were differentially expressed in AA. PSPH exhibited the greatest fold-change (AA > CA), but this was entirely accounted for by a homolog (PSPHL) hidden within the PSPH probe set. Among other significantly different genes were: for AA > CA, SOS1, AMFR, FGFR3; and for AA < CA, ARVCF, BIN3, EIF4B. Many more (221 transcripts for 204 genes) were differentially expressed at the less stringent threshold of FDR <.05. Using the biological systems approach, we identified shear response biology as being significantly different for AA versus CA, showing an apparent tonic increase of expression (AA > CA) for 46/157 genes within that system.ConclusionsMany of the genes implicated here have substantial roles in endothelial biology. Shear stress response, a critical regulator of endothelial function and vascular homeostasis, may be different between AA and CA. These results potentially have direct implications for the role of endothelial cells in vascular disease (hypertension, stroke) and cancer (via angiogenesis). Also, they are consistent with our over-arching hypothesis that genetic influences stemming from ancestral continent-of-origin could impact upon endothelial cell biology and thereby contribute to disparity of vascular-related disease burden among AA. The method used here could be productively employed to bridge the gap between information from structural genomics (for example, disease association) and cell function and pathophysiology.


Translational Research | 2009

BLOOD OUTGROWTH ENDOTHELIAL CELL MIGRATION AND TRAPPING IN VIVO: A WINDOW INTO GENE THERAPY

Liming Milbauer; Judy Enenstein; Mark Roney; Anna Solovey; Vidya Bodempudi; Timothy C. Nichols; Robert P. Hebbel

Human blood outgrowth endothelial cells (hBOECs) may be useful delivery cells for gene therapy. hBOECs have high expansion capacity and a stable phenotype. If incorporated into blood vessels, hBOECs could release therapeutic agents directly into the bloodstream. However, little is known about the lodging and homing of hBOECs in vivo. We examined the homing patterns of hBOECs in mice and explored extending cell-based factor VIII (FVIII) gene therapy from mice to larger animals. hBOECs were injected into NOD/SCID mice to determine where they localize, how localization changes over time, and if there were toxic effects on host organs. The presence of hBOECs in mouse organs was determined by quantitative polymerase chain reaction (qPCR) and immunofluorescence microscopy. hBOECs lodged most notably in mouse lungs at 3 h, but by 24 h, no differences were observed among 9 organs. The longevity of hBOECs was assessed up to 7 months in vivo. hBOECs expanded well and then reached a plateau in vivo. hBOECs from older cultures expanded equally well in vivo as younger hBOECs. hBOECs caused no noticeable organ toxicity up to 3 days after injection. When mice were pretreated with antibodies to E-selectin, P-selectin, or anti-alpha4 integrin prior to hBOEC injection, the number of hBOECs in lungs at 3 h was decreased. Preliminary studies that infused hemophilic dogs with autologous canine BOECs that overexpressed FVIII (B-domain deleted) showed improvement in whole blood clotting times (WBCTs). In conclusion, the survivability, expandability, and lack of toxicity of BOECs in vivo indicate that they may be valuable host cells for gene therapy.


International Journal of Biological Macromolecules | 2013

Poly (lactic acid)-chitosan-collagen composite nanofibers as substrates for blood outgrowth endothelial cells.

B. Swarnalatha; Sethu Nair; K.T. Shalumon; Liming Milbauer; R. Jayakumar; Bindhu Paul-Prasanth; K.K. Menon; Robert P. Hebbel; Arif Somani; Shantikumar V. Nair

In this work, the attachment, viability and functionality of rat Blood Outgrowth Endothelial Cells (rBOEC) and genetically modified rBOEC (rBOEC/eNOS-GFP), which over express endothelial nitric oxide synthase (eNOS), were investigated on Poly(lactic acid) (PLA)-chitosan and PLA-chitosan-collagen nanofibrous scaffolds. Both the cell types displayed good attachment, remained viable and functional on both scaffolds. Moreover, incorporation of collagen in the scaffold helped in sustaining the rBOEC for upto one week, although collagen was not found necessary for rBOEC/eNOS-GFP. We conclude that PLA-chitosan based nanofibrous scaffolds can be a potential candidate for BOEC based wound healing applications.


American Journal of Hematology | 2009

Proinflammatory phenotype with imbalance of KLF2 and RelA: risk of childhood stroke with sickle cell anemia.

Judy Enenstein; Liming Milbauer; Evidio Domingo; Alexandra Wells; Mark Roney; Jim Kiley; Peng Wei; Robert P. Hebbel

Altered inflammation signaling within the cerebral vasculature may be an important risk factor for stroke in children with sickle cell anemia (SCA). This study examines how differential expression of NFκB/p65 (RelA), KLF2, and other transcription factors may act as switches in inflammation signaling leading to observed differences between non‐SCA (NS) African Americans and African Americans with SCA who are either at risk (AR) or not at risk (NAR) of childhood stroke based on occurrence of Circle of Willis disease. Clover/Transfac analysis was used to identify overrepresented transcription factor binding motifs on genes associated with inflammation. Transcription factor binding motifs for the NFκB family and RFX1 were overrepresented on inflammation signaling gene set analysis. Variations in protein expression were determined by flow cytometry of blood outgrowth endothelial cells (BOECs) from NS, AR, and NAR donors and Western blots of protein extracts from both unstimulated and TNFα/IL1β‐stimulated BOECs. BOECs from patients with SCA had more cytoplasmic‐derived RelA compared with NS BOECs. Sickle BOECs also had heightened responses to inflammatory stimuli compared with NS BOECs, as shown by increased nuclear RelA, and intracellular adhesion molecule (ICAM) response to TNFα/IL1β stimulation. Multiple control points in RelA signaling were associated with risk of childhood stroke. The ratio of proinflammatory factor RelA to anti‐inflammatory factor KLF2 was greater in BOECs from AR donors than NS donors. Group risk of childhood stroke with SCA was greatest among individuals who exhibited increased expression of proinflammatory transcription factors and decreased expression of transcription factors that suppress inflammation. Am. J. Hematol. 2010.


Journal of Bioinformatics and Computational Biology | 2007

A practical question based on cross-platform microarray data normalization: are BOEC more like large vessel or microvascular endothelial cells or neither of them?

Aixiang Jiang; Wei Pan; Liming Milbauer; Yu Shyr; Robert P. Hebbel

Since the available microarray data of BOEC (human blood outgrowth endothelial cells), large vessel, and microvascular endothelial cells were from two different platforms, a working cross-platform normalization method was needed to make these data comparable. With six HUVEC (human umbilical vein endothelial cells) samples hybridized on two-channel cDNA arrays and six HUVEC samples on Affymetrix arrays, 64 possible combinations of a three-step normalization procedure were investigated to search for the best normalization method, which was selected, based on two criteria measuring the extent to which expression profiles of biological samples of the same cell type arrayed on two platforms were indistinguishable. Next, three discriminative gene lists between the large vessel and the microvascular endothelial cells were achieved by SAM (significant analysis of microarrays), PAM (prediction analysis for microarrays), and a combination of SAM and PAM lists. The final discriminative gene list was selected by SVM (support vector machine). Based on this discriminative gene list, SVM classification analysis with best tuning parameters and 10,000 times of validations showed that BOEC were far from large vessel cells, they either formed their own class, or fell into the microvascular class. Based on all the common genes between the two platforms, SVM analysis further confirmed this conclusion.


American Journal of Hematology | 2017

A monocyte-TNF-endothelial activation axis in sickle transgenic mice: Therapeutic benefit from TNF blockade

Anna Solovey; Arif Somani; John D. Belcher; Liming Milbauer; Lucile Vincent; Rafal Pawlinski; Karl A. Nath; Robert J. Kelm; Nigel Mackman; M. Gerard O'Sullivan; Kalpna Gupta; Gregory M. Vercellotti; Robert P. Hebbel

Elaboration of tumor necrosis factor (TNF) is a very early event in development of ischemia/reperfusion injury pathophysiology. Therefore, TNF may be a prominent mediator of endothelial cell and vascular wall dysfunction in sickle cell anemia, a hypothesis we addressed using NY1DD, S+SAntilles, and SS‐BERK sickle transgenic mice. Transfusion experiments revealed participation of abnormally activated blood monocytes exerting an endothelial activating effect, dependent upon Egr‐1 in both vessel wall and blood cells, and upon NFκB(p50) in a blood cell only. Involvement of TNF was identified by beneficial impact from TNF blockers, etanercept and infliximab, with less benefit from an IL‐1 blocker, anakinra. In therapeutic studies, etanercept ameliorated multiple disturbances of the murine sickle condition: monocyte activation, blood biomarkers of inflammation, low platelet count and Hb, vascular stasis triggered by hypoxia/reoxygenation (but not if triggered by hemin infusion), tissue production of neuro‐inflammatory mediators, endothelial activation (monitored by tissue factor and VCAM‐1 expression), histopathologic liver injury, and three surrogate markers of pulmonary hypertension (perivascular inflammatory aggregates, arteriolar muscularization, and right ventricular mean systolic pressure). In aggregate, these studies identify a prominent—and possibly dominant—role for an abnormal monocyte‐TNF‐endothelial activation axis in the sickle context. Its presence, plus the many benefits of etanercept observed here, argue that pilot testing of TNF blockade should be considered for human sickle cell anemia, a challenging but achievable translational research goal.

Collaboration


Dive into the Liming Milbauer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Solovey

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julia Nguyen

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Mark Roney

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Peng Wei

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Wei Pan

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arif Somani

University of Minnesota

View shared research outputs
Researchain Logo
Decentralizing Knowledge