Lin Ai
South China Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lin Ai.
Veterinary Parasitology | 2010
Lin Ai; C. Li; Hany M. Elsheikha; S.J. Hong; Jun-Hu Chen; Shao-Hong Chen; X. Li; X.Q. Cai; Mu-Xin Chen; Xing-Quan Zhu
The present study developed and validated a species-specific loop-mediated isothermal amplification (LAMP) assay for the rapid detection and discrimination of Fasciola hepatica and Fasciola gigantica. The LAMP assay is inexpensive, easy to perform and shows rapid reaction, wherein the amplification can be obtained in 45 min under isothermal conditions of 61 °C or 62 °C by employing a set of four species-specific primer mixtures and results can be checked through naked-eye visualization. The optimal assay conditions with no cross-reaction with other closely related trematodes (Clonorchis sinensis, Opisthorchis viverrini, Orientobilharzia turkestanicum and Schistosoma japonicum) as well as within the two Fasciola species were established. The assay was validated by examining F. gigantica DNA in the intermediate host snails and in faecal samples. The results indicated that the LAMP assay is approximately 10(4) times more sensitive than the conventional specific PCR assays. These findings indicate that this Fasciola species-specific LAMP assay may have a potential clinical application for detection and differentiation of Fasciola species, especially in endemic countries.
Parasites & Vectors | 2011
Lin Ai; Mu-Xin Chen; Samer Alasaad; Hany M. Elsheikha; Juan Li; Hai-Long Li; Rui-Qing Lin; Feng-Cai Zou; Xing-Quan Zhu; Jia-Xu Chen
Liver flukes belonging to the genus Fasciola are among the causes of foodborne diseases of parasitic etiology. These parasites cause significant public health problems and substantial economic losses to the livestock industry. Therefore, it is important to definitively characterize the Fasciola species. Current phenotypic techniques fail to reflect the full extent of the diversity of Fasciola spp. In this respect, the use of molecular techniques to identify and differentiate Fasciola spp. offer considerable advantages. The advent of a variety of molecular genetic techniques also provides a powerful method to elucidate many aspects of Fasciola biology, epidemiology, and genetics. However, the discriminatory power of these molecular methods varies, as does the speed and ease of performance and cost. There is a need for the development of new methods to identify the mechanisms underpinning the origin and maintenance of genetic variation within and among Fasciola populations. The increasing application of the current and new methods will yield a much improved understanding of Fasciola epidemiology and evolution as well as more effective means of parasite control. Herein, we provide an overview of the molecular techniques that are being used for the genetic characterization, detection and genotyping of Fasciola spp..
Parasitology International | 2012
Xian-Quan Cai; Hai-Qiong Yu; Jian-Shan Bai; Jian-Dong Tang; Xu-Chu Hu; Ding-Hu Chen; Renli Zhang; Mu-Xin Chen; Lin Ai; Xing-Quan Zhu
Clonorchiasis caused by the oriental liver fluke Clonorchis sinensis is a fish-borne zoonosis endemic in a number of countries. This article describes the development of a TaqMan based real-time PCR assay for detection of C. sinensis DNA in human feces and in fishes. Primers targeting the first internal transcribed spacer (ITS-1) sequence of the fluke were highly specific for C. sinensis, as evidenced by the negative amplification of closely related trematodes in the test with the exception of Opisthorchis viverrini. The detection limit of the assay was 1pg of purified genomic DNA, 5EPG (eggs per gram feces) or one metacercaria per gram fish filet. The assay was evaluated by testing 22 human fecal samples and 37 fish tissues microscopically determined beforehand, and the PCR results were highly in agreement with the microscopic results. This real-time PCR assay provides a useful tool for the sensitive detection of C. sinensis DNA in human stool and aquatic samples in China and other endemic countries where O. viverrini and Opisthorchis felineus are absent.
Parasitology Research | 2011
Mu-Xin Chen; Lin Ai; Min-Jun Xu; Shao-Hong Chen; Yongnian Zhang; Guo Jg; Li-Guang Tian; Ling Zhang; Xing-Quan Zhu; Jun-Hu Chen
Trichinella spiralis is an important zoonotic nematode causing trichinellosis which is associated with human diseases such as malaise, anorexia, nausea, vomiting, abdominal pain, fever, diarrhea, and constipation. microRNAs (miRNAs) are endogenous small non-coding RNAs that play important roles in the regulation of gene expression. The objective of the present study was to examine the miRNA expression profile of the larvae of T. spiralis by Solexa deep sequencing combined with stem-loop real-time polymerase chain reaction (PCR) analysis. T. spiralis larvae were collected from the skeletal muscle of naturally infected pigs in Henan province, China, by artificial digestion using pepsin. The specific identity of the T. spiralis larvae was confirmed by PCR amplification and subsequent sequence analysis of the internal transcribed spacer of ribosomal DNA. A total of 17,851,693 reads with 2,773,254 unique reads were obtained. Eleven conserved miRNAs from 115 unique xsmall RNAs (sRNAs) and 12 conserved miRNAs from 130 unique sRNAs were found by BLAST analysis against the known miRNAs of Caenorhabditis elegans (ftp://ftp.ncbi.nih.gov/genomes/Caenorhabditis_elegans) and Brugia malayi dataset (http://www.ncbi.nlm.nih.gov/genomeprj?Db=genomeprj&cmd=ShowDetailView&TermToSearch=9549) in miRBase, respectively. One novel miRNA with 12 precursors were identified and certified using the reference genome of B. malayi, while no novel miRNA was found when using the reference genome of C. elegans. Nucleotide bias analysis showed that the uracil was the prominent nucleotide, particularly at the 1st, 6th, 18th, and 23th positions, which were almost at the beginning, middle, and the end of the conserved miRNAs. The identification and characterization of T. spiralis miRNAs provides a new resource to study regulation of genes and their networks in T. spiralis.
Experimental Parasitology | 2011
Mu-Xin Chen; Lin Ai; Min-Jun Xu; Renli Zhang; Shao-Hong Chen; Yongnian Zhang; Jian Guo; Li-Guang Tian; Lingling Zhang; Xing-Quan Zhu; Jia-Xu Chen
Angiostrongylus cantonensis causes eosinophilic meningitis and eosinophilic pleocytosis in humans and is of significant socio-economic importance globally. microRNAs (miRNAs) are endogenous small non-coding RNAs that play crucial roles in gene expression regulation, cellular function and defense, homeostasis and pathogenesis. They have been identified in a diverse range of organisms. The objective of this study was to determine and characterize miRNAs of female and male adults of A. cantonensis by Solexa deep sequencing. A total of 8,861,260 and 10,957,957 high quality reads with 20 and 23 conserved miRNAs were obtained in females and males, respectively. No new miRNA sequence was found. Nucleotide bias analysis showed that uracil was the prominent nucleotide, particularly at positions of 1, 10, 14, 17 and 22, approximately at the beginning, middle and the end of the conserved miRNAs. To our knowledge, this is the first report of miRNA profiles in A. cantonensis, which may represent a new platform for studying regulation of genes and their networks in A. cantonensis.
Veterinary Parasitology | 2011
Lin Ai; Ya-Biao Weng; Hany M. Elsheikha; Guang-Hui Zhao; Samer Alasaad; Jun-Hu Chen; Jie Li; Hai-Long Li; C.R. Wang; Mu-Xin Chen; R. Q. Lin; Xing-Quan Zhu
The present study examined sequence variability in a portion of the mitochondrial cytochrome c oxidase subunit 1 (pcox1) and NADH dehydrogenase subunits 4 and 5 (pnad4 and pnad5) among 39 isolates of Fasciola spp., from different hosts from China, Niger, France, the United States of America, and Spain; and their phylogenetic relationships were re-constructed. Intra-species sequence variations were 0.0-1.1% for pcox1, 0.0-2.7% for pnad4, and 0.0-3.3% for pnad5 for Fasciola hepatica; 0.0-1.8% for pcox1, 0.0-2.5% for pnad4, and 0.0-4.2% for pnad5 for Fasciola gigantica, and 0.0-0.9% for pcox1, 0.0-0.2% for pnad4, and 0.0-1.1% for pnad5 for the intermediate Fasciola form. Whereas, nucleotide differences were 2.1-2.7% for pcox1, 3.1-3.3% for pnad4, and 4.2-4.8% for pnad5 between F. hepatica and F. gigantica; were 1.3-1.5% for pcox1, 2.1-2.9% for pnad4, 3.1-3.4% for pnad5 between F. hepatica and the intermediate form; and were 0.9-1.1% for pcox1, 1.4-1.8% for pnad4, 2.2-2.4% for pnad5 between F. gigantica and the intermediate form. Phylogenetic analysis based on the combined sequences of pcox1, pnad4 and pnad5 revealed distinct groupings of isolates of F. hepatica, F. gigantica, or the intermediate Fasciola form irrespective of their origin, demonstrating the usefulness of the mtDNA sequences for the delineation of Fasciola species, and reinforcing the genetic evidence for the existence of the intermediate Fasciola form.
Annals of Tropical Medicine and Parasitology | 2010
Lin Ai; S. J. Dong; W. Y. Zhang; Hany M. Elsheikha; Y. S. Mahmmod; Rui-Qing Lin; Z. G. Yuan; Y. L. Shi; Weiyi Huang; Xing-Quan Zhu
Parasitology Research | 2011
Mu-Xin Chen; Lin Ai; Renli Zhang; J. J. Xia; K. Wang; Shao-Hong Chen; Yongnian Zhang; Min-Jun Xu; X. Li; X. Q. Zhu; Jun-Hu Chen
Parasitology Research | 2010
J. Li; Guang-Hui Zhao; Fengcai Zou; Xi-Hao Mo; Zi-Guo Yuan; Lin Ai; Hai-Long Li; Ya-Biao Weng; R. Q. Lin; X. Q. Zhu
Chinese journal of parasitology & parasitic diseases | 2012
Lu Y; Cai Yc; Shao-Hong Chen; Chen Jx; Guo J; Chen Mx; Lin Ai; Chu Yh; Chen Z; Zhou Xn