Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lin Wei is active.

Publication


Featured researches published by Lin Wei.


PLOS ONE | 2010

Association of Toll-like receptor 4 gene polymorphism and expression with urinary tract infection types in adults.

Xiaolin Yin; Tian-Wen Hou; Ying Liu; Jing Chen; Zhiyan Yao; Cuiqing Ma; Lijuan Yang; Lin Wei

Background Innate immunity of which Toll-like receptor (TLR) 4 and CXCR1 are key elements plays a central role in the development of urinary tract infection (UTI). Although the relation between the genetics of TLR4 and CXCR1 and UTI is investigated partly, the polymorphisms and expression of TLR4 and CXCR1 in different types of UTI in adults are not extremely clear. Methodology/Principal Findings This study investigates the presence of TLR4 A (896) G and CXCR1 G (2608) C polymorphisms in 129 UTI patients using RFLP-PCR. Gene and allelic prevalence were compared with 248 healthy controls. Flow cytometry was used to detect TLR4 and CXCR1 expression in the monocytes of UTI patients and healthy controls. TLR4 (896) AG genotype and TLR4 (896) G allele had higher prevalence in UTI (especially in acute cystitis and urethritis) patients, whereas CXCR1 (2608) GC genotype and CXCR1 (2608) C allele had lower prevalence in UTI patients than controls. TLR4 expression was significantly lower in chronic UTI patients than in acute pyelonephritis or healthy controls. CXCR1 expression was similar in both controls and patients. TLR4 expression in chronic UTI patients after astragalus treatment was higher than pre-treatment. Conclusions The results indicate the relationship between the carrier status of TLR4 (896) G alleles and the development of UTI, especially acute cystitis and urethritis, in adults. TLR4 expression levels are correlated with chronic UTI.


Biochemical and Biophysical Research Communications | 2010

Enhancement of the innate immune response of bladder epithelial cells by Astragalus polysaccharides through upregulation of TLR4 expression

Xiaolin Yin; Lei Chen; Ying Liu; Jianling Yang; Cuiqing Ma; Zhiyan Yao; Lijuan Yang; Lin Wei; Mingyuan Li

The innate host defenses at mucosal surfaces are critical in the early stages of urinary tract bacterial infection. Recent studies have shown that uroepithelial cells aid innate immune cells in fighting off infection, although the exact mechanism by which the uroepithilium participates in immunity remains unclear. TLR4 has been implicated to possess antimicrobial activities specific for bladder epithelial cells (BECs). TLR4 promotes secretion of IL-6 and IL-8, mediates inhibition of bladder epithelial cell (BEC) bacterial invasion, and mediates expulsion of uropathogenic Escherichia coli from BECs. In this study, cultured 5637 cells and Balb/C mice were treated with Astragalus polysaccharides (APS) against invading E. coli. To determine the contribution of TLR4 upregulation to immune response, TLR4 expression and bacterial colony numbers were monitored. After 24 h incubation, only 5637 cells treated with 500 microg/ml APS expressed higher levels of TLR4 compared with the untreated group. However, after 48h, all 5637 cells treated by APS showed higher levels of TLR4 expression than the control cells. The TLR4 expression in the bladder and macrophages mice that received APS was higher than that in the controls. Bacterial colonization in 5637 cells and the bladders of mice treated with APS was significantly reduced compared with the controls. These results demonstrate that at certain concentrations, APS can induce increased TLR4 expression in vivo and in vitro. Further, TLR4 expression upregulation can enhance innate immunity during mucosal bacterial infection. The findings establish the use of APS to modulate the innate immune response of the urinary tract through TLR4 expression regulation as an alternative option for UTI treatment.


Biochemical and Biophysical Research Communications | 2008

Protective effect of a RSV subunit vaccine candidate G1F/M2 was enhanced by a HSP70-Like protein in mice.

Ruihong Zeng; Zhenya Zhang; Xingguo Mei; Wei Gong; Lin Wei

Respiratory syncytial virus (RSV) is a major respiratory pathogen in newborns. Neonate vaccine should induce strong protective immunity. We have engineered a subunit vaccine candidate G1F/M2. A major problem in developing subunit vaccines is their limited immunogenicity. Aluminium adjuvants with a long history of use with routine childhood vaccines have some limitations, especially inability to elicit CTL response. There is a need for alternative adjuvants. Heat shock proteins (HSPs) are characterized as potent immunoadjuvants. In this study, HSP70-like protein 1 (HSP70L1) gene was cloned. The recombinant protein HSP70L1 was expressed in E. coli, purified and renaturated. We evaluated the potential of HSP70L1 used as the adjuvant of G1F/M2. G1F/M2 was chemically cross-linked with HSP70L1 (HSP-G1F/M2). HSP70L1 enhanced significantly the immunogenicity and protective effect of G1F/M2. HSP-G1F/M2 induced significant higher levels of antibodies, neutralizing antibodies and CTL activity than unadjuvanted G1F/M2. The antibody titers induced by HSP-G1F/M2 were similar to that by G1F/M2+Alum. RSV-specific CTL activity induced by HSP-G1F/M2 was stronger than that by G1F/M2+Alum. Interestingly, the protective effect of HSP-G1F/M2 against RSV was significantly stronger than that of G1F/M2+Alum. The results suggest that HSP70L1 is a potent adjuvant of G1F/M2.


Cellular & Molecular Immunology | 2009

Similar ability of FbaA with M protein to elicit protective immunity against group A streptococcus challenge in mice.

Cuiqing Ma; Caihong Li; Xiurong Wang; Ruihong Zeng; Xiaolin Yin; Huidong Feng; Lin Wei

Group A streptococcus (GAS), an important human pathogen, can cause various kinds of infections including superficial infections and potentially lethal infections, and the search for an effective vaccine to prevent GAS infections has been ongoing for many years. This paper compares the immunogenicity and immunoprotection of FbaA (an Fn-binding protein expressed on the surface of GAS) with that of M protein, the best immunogen of GAS. Assay for immune response showed that FbaA, similar to M protein, could induce protein-specific high IgG titer in BALB/c mice. Furthermore, following GAS challenge, the mice immunized with FbaA showed the same protective rate as those with M protein. These results indicate that FbaA is similar in ability to M protein in inducing protective immunity against GAS challenge in mice.


Journal of Virology | 2012

Interleukin-27 Inhibits Vaccine-Enhanced Pulmonary Disease following Respiratory Syncytial Virus Infection by Regulating Cellular Memory Responses

Ruihong Zeng; Huixian Zhang; Yan Hai; Yuxiu Cui; Lin Wei; Na Li; Jianxun Liu; Caixia Li; Ying Liu

ABSTRACT Respiratory syncytial virus (RSV) is the most important cause of lower respiratory tract disease in young children. In the 1960s, infants vaccinated with formalin-inactivated RSV developed a more severe disease characterized by excessive inflammatory immunopathology in lungs upon natural RSV infection. The fear of causing the vaccine-enhanced disease (VED) is an important obstacle for development of safe and effective RSV vaccines. The recombinant vaccine candidate G1F/M2 immunization also led to VED. It has been proved that cellular memory induced by RSV vaccines contributed to VED. Interleukin-27 (IL-27) and IL-23 regulate Th1, Th17, and/or Th2 cellular immune responses. In this study, mice coimmunized with pcDNA3–IL-27 and G1F/M2 were fully protected and, importantly, did not develop vaccine-enhanced inflammatory responses and immunopathology in lungs after RSV challenge, which was correlated with moderate Th1-, suppressed Th2-, and Th17-like memory responses activated by RSV. In contrast, G1F/M2- or pcDNA3–IL-23+G1F/M2-immunized mice, in which robust Th2- and Th17-like memory responses were induced, developed enhanced pulmonary inflammation and severe immunopathology. Mice coimmunized with G1F/M2 and the two cytokine plasmids exhibited mild inflammatory responses as well as remarkable Th1-, suppressed Th2-, and Th17-like memory responses. These results suggested that Th1-, Th2-, and Th17-like memory responses and, in particular, excessive Th2- and Th17-like memory responses were closely associated with VED; IL-27 may inhibit VED following respiratory syncytial virus infection by regulating cellular memory responses.


Cellular & Molecular Immunology | 2015

A MyD88-JAK1-STAT1 complex directly induces SOCS-1 expression in macrophages infected with Group A Streptococcus.

Jinghua Wu; Cuiqing Ma; Haixin Wang; Shuhui Wu; Gao Xue; Xinli Shi; Zhang Song; Lin Wei

Some pathogens can use host suppressor of cytokine signaling 1 (SOCS-1), an important negative-feedback molecule, as the main mode of immune evasion. Here we found that group A Streptococcus (GAS) is capable of inducing SOCS-1 expression in RAW264.7 and BMDM macrophages. IFN-β plays a role in GAS-induced SOCS-1 expression in macrophages following the induction of cytokine expression by GAS, representing the classical pathway of SOCS-1 expression. However, GAS also induced STAT1 activation and SOCS-1 expression when GAS-infected cells were incubated with anti-IFN-β monoclonal antibody in this study. Moreover, upon comparing TLR4−/− BMDM macrophages with wild-type (WT) cells, we found that TLR4 also plays an essential role in the induction of SOCS-1. MyD88, which is an adaptor protein for TLR4, contributes to STAT1 activation and phosphorylation by forming a complex with Janus kinase 1 (JAK1) and signal transducer and activator of transcription 1 (STAT1) in macrophages. GAS-stimulated expression of STAT1 was severely impaired in MyD88−/− macrophages, whereas expression of JAK1 was unaffected, suggesting that MyD88 was involved in STAT1 expression and phosphorylation. Together, these data demonstrated that in addition to IFN-β signaling and MyD88 complex formation, JAK1 and STAT1 act in a novel pathway to directly induce SOCS-1 expression in GAS-infected macrophages, which may be more conducive to rapid bacterial infection.Cellular & Molecular Immunology advance online publication, 17 November 2014; doi:10.1038/cmi.2014.107


Acta Pharmacologica Sinica | 2015

Nutlin-3-induced redistribution of chromatin-bound IFI16 in human hepatocellular carcinoma cells in vitro is associated with p53 activation

Xinli Shi; Jing Yang; Nan Mao; Jinghua Wu; Laifeng Ren; Yuan Yang; Xiaolin Yin; Lin Wei; Ming-yuan Li; Baoning Wang

Aim:Interferon-γ inducible protein 16 (IFI16), a DNA sensor for DNA double-strand break (DSB), is expressed in most human hepatocellular carcinoma cell (HCC) lines. In this study we investigated the re-localization of chromatin-bound IFI16 by Nutlin-3, a DNA damage agent, in HCC cells in vitro, and the potential mechanisms.Methods:Human HCC SMMC-7721 (wild-type TP53), Huh-7 (mutant TP53), Hep3B (null TP53) and normal fetal liver L02 cell lines were examined. DSB damage in HCC cells was detected via γH2AX expression and foci formation assay. The expression of IFI16 and IFNB mRNA was measured using RT-PCR, and subcellular localization and expression of the IFI16 protein were detected using chromatin fractionation, Western blot analysis, and fluorescence microscopy.Results:Treatment of SMMC-7721 cells with Nutlin-3 (10 μmol/L) or etoposide (40 μmol/L) induced significant DSB damage. In SMMC-7721 cells, Nutlin-3 significantly increased the expression levels of IFI16 and IFNB mRNA, and partially redistributed chromatin-bound IFI16 protein to the cytoplasm. These effects were blocked by pretreatment with pifithrin-α, a p53 inhibitor. Furthermore, Nutlin-3 did not induce ectopic expression of IFI16 protein in Huh-7 and Hep3B cells. Moreover, the association of IFI16 with chromatin and Nutlin-3-induced changes in localization were not detected in L02 cells.Conclusion:Nutlin-3 regulates the subcellular localization of IFI16 in HCC cells in vitro in a p53-dependent manner.


Journal of Virology | 2018

Respiratory Syncytial Virus Replication Is Promoted by Autophagy-Mediated Inhibition of Apoptosis

Miao Li; Jian Li; Ruihong Zeng; Jianling Yang; Jianguo Liu; Zhengzheng Zhang; Xiaotian Song; Zhiyan Yao; Cuiqing Ma; Wenjian Li; Kai Wang; Lin Wei

ABSTRACT Respiratory syncytial virus (RSV) is the main cause of acute lower respiratory tract infection (ALRI) in children worldwide. Virus-host interactions affect the progression and prognosis of the infection. Autophagy plays important roles in virus-host interactions. Respiratory epithelial cells serve as the front line of host defense during RSV infection, However, it is still unclear how they interact with RSV. In this study, we found that RSV induced autophagy that favored RSV replication and exacerbated lung pathology in vivo. Mechanistically, RSV induced complete autophagy flux through reactive oxygen species (ROS) generation and activation of the AMP-activated protein kinase/mammalian target of rapamycin (AMPK-MTOR) signaling pathway in HEp-2 cells. Furthermore, we evaluated the functions of autophagy in RSV replication and found that RSV replication was increased in HEp-2 cells treated with rapamycin but decreased remarkably in cells treated with 3-methylademine (3-MA) or wortmannin. Knockdown key molecules in the autophagy pathway with short hairpinp RNA (shRNA) against autophagy-related gene 5 (ATG5), autophagy-related gene 7 (ATG7), or BECN1/Beclin 1 or treatment with ROS scavenger N-acetyl-l-cysteine (NAC) and AMPK inhibitor (compound C) suppressed RSV replication. 3-MA or shATG5/BECN1 significantly decreased cell viability and increased cell apoptosis at 48 hours postinfection (hpi). Blocking apoptosis with Z-VAD-FMK partially restored virus replication at 48 hpi. Those results provide strong evidence that autophagy may function as a proviral mechanism in a cell-intrinsic manner during RSV infection. IMPORTANCE An understanding of the mechanisms that respiratory syncytial virus utilizes to interact with respiratory epithelial cells is critical to the development of novel antiviral strategies. In this study, we found that RSV induces autophagy through a ROS-AMPK signaling axis, which in turn promotes viral infection. Autophagy favors RSV replication through blocking cell apoptosis at 48 hpi. Mechanistically, RSV induces mitophagy, which maintains mitochondrial homeostasis and therefore decreases cytochrome c release and apoptosis induction. This study provides a novel insight into this virus-host interaction, which may help to exploit new antiviral treatments targeting autophagy processes.


Journal of Virology | 2017

CpG in Combination with an Inhibitor of Notch Signaling Suppresses Formalin-Inactivated Respiratory Syncytial Virus-Enhanced Airway Hyperresponsiveness and Inflammation by Inhibiting Th17 Memory Responses and Promoting Tissue-Resident Memory Cells in Lungs

Lei Zhang; Hongyong Li; Yan Hai; Wei Yin; Wenjian Li; Boyang Zheng; Xiaomin Du; Na Li; Zhengzheng Zhang; Yuqing Deng; Ruihong Zeng; Lin Wei

ABSTRACT Respiratory syncytial virus (RSV) is the leading cause of childhood hospitalizations. The formalin-inactivated RSV (FI-RSV) vaccine-enhanced respiratory disease (ERD) has been an obstacle to the development of a safe and effective killed RSV vaccine. Agonists of Toll-like receptor (TLR) have been shown to regulate immune responses induced by FI-RSV. Notch signaling plays critical roles during the differentiation and effector function phases of innate and adaptive immune responses. Cross talk between TLR and Notch signaling pathways results in fine-tuning of TLR-triggered innate inflammatory responses. We evaluated the impact of TLR and Notch signaling on ERD in a murine model by administering CpG, an agonist of TLR9, in combination with L685,458, an inhibitor of Notch signaling during FI-RSV immunization. Activation with CpG or deficiency of MyD88-dependent TLR signaling did not alleviate airway inflammation in FI-RSV-immunized mice. Activation or inhibition of Notch signaling with Dll4, one of the Notch ligands, or L685,458 did not suppress FI-RSV-enhanced airway inflammation either. However, the CpG together with L685,458 markedly inhibited FI-RSV-enhanced airway hyperresponsiveness, weight loss, and lung inflammation. Interestingly, CpG plus L685,458 completely inhibited FI-RSV-associated Th17 and Th17-associated proinflammatory chemokine responses in lungs following RSV challenge but not Th1 or Th2, memory responses. In addition, FI-RSV plus CpG plus L685,458 promoted protective CD8+ lung tissue-resident memory (TRM) cells. These results indicate that activation of TLR signaling combined with inhibition of Notch signaling prevent FI-RSV ERD, and the mechanism appears to involve suppressing proinflammatory Th17 memory responses and promoting protective TRM in lungs. IMPORTANCE RSV is the most important cause of lower respiratory tract infections in infants. The FI-RSV-enhanced respiratory disease (ERD) is a major impediment to the development of a safe and effective killed RSV vaccine. Using adjuvants to regulate innate and adaptive immune responses could be an effective method to prevent ERD. We evaluated the impact of TLR and Notch signaling on ERD by administering CpG, an agonist of TLR9, in combination with L685,458, an inhibitor of Notch signaling, during FI-RSV immunization. The data showed that treatment of TLR or Notch signaling alone did not suppress FI-RSV-enhanced airway inflammation, while CpG plus L685,458 markedly inhibited ERD. The mechanism appears to involve suppressing Th17 memory responses and promoting tissue-resident memory cells. Moreover, these results suggest that regulation of lung immune memory with adjuvant compounds containing more than one immune-stimulatory molecule may be a good strategy to prevent FI-RSV ERD.


PLOS ONE | 2014

Role of the Exogenous HCV Core Protein in the Interaction of Human Hepatocyte Proliferation and Macrophage Sub-Populations

Zhiyan Yao; Xiaotian Song; Shiru Cao; Wenzhang Liang; Wenran Lu; Lijuan Yang; Zhengzheng Zhang; Lin Wei

Background The core protein of hepatitis C virus (HCV) is found in the cytoplasm and nuclei of infected cells, including hepatocytes and other cells in the liver. The core protein could be secreted as well. Resident liver macrophages are dependent on the tissue micro-environment and external stimuli to differentiate M1 and M2 hypotypes with distinct functions, and increased expression of the nuclear transcription factor STAT3 was seen in M2-polarized macrophages. In contrast to proinflammatory M1 macrophages, M2 macrophages serve beneficial roles in chronic inflammation, immunosuppression, and tumorigenesis. Methods Monocyte-derived human macrophage line (mTHP-1) was treated with the exogenous HCV core protein. Next, the mTHP-1 culture supernatant or cell pellets were added to culture media of normal human liver cell line (L02). Results Only the culture supernatant stimulated L02 cells proliferation, which was associated with phosphorylated ERK expression. Core protein activated mTHP-1 cells showed enhanced pro- and anti-inflammatory cytokines secretion, which was accompanied by high expression of phosphorylated NF-κB105 and NF-κB65. However, phosphorylated STAT1, and STAT3, which are normally associated with M1 and M2 macrophage polarization, and cell surface expression of CD206, CD14, CD16, and CD86, were unaltered. A transwell co-culture system showed that only in mTHP-1 co-cultured with L02 in the presence of exogenous core protein, were higher levels of phosphorylated STAT3 and CD206 seen. Conclusions We showed L02 cells proliferation was accelerated by the culture supernatant of mTHP-1 cells treated with the exogenous HCV core protein. The exogenous core protein mediated the interaction between macrophages and hepatocytes in co-culture, which enhanced the expression of phosphorylated STAT3 and CD206 in macrophages.

Collaboration


Dive into the Lin Wei's collaboration.

Top Co-Authors

Avatar

Cuiqing Ma

Hebei Medical University

View shared research outputs
Top Co-Authors

Avatar

Ruihong Zeng

Hebei Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiaolin Yin

Hebei Medical University

View shared research outputs
Top Co-Authors

Avatar

Zhiyan Yao

Hebei Medical University

View shared research outputs
Top Co-Authors

Avatar

Wenjian Li

Hebei Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiaotian Song

Hebei Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiurong Wang

Hebei Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianling Yang

Hebei Medical University

View shared research outputs
Top Co-Authors

Avatar

Lijuan Yang

Hebei Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge