Lina Prasmickaite
Oslo University Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lina Prasmickaite.
Journal of Microscopy | 2005
Kristian Berg; Pål Kristian Selbo; Anette Weyergang; Andreas Dietze; Lina Prasmickaite; Anette Bonsted; Birgit Engesæter; Even Angell-Petersen; Trond Warloe; N. Frandsen; Anders Høgset
A photosensitizer is defined as a chemical entity, which upon absorption of light induces a chemical or physical alteration of another chemical entity. Some photosensitizers are utilized therapeutically such as in photodynamic therapy (PDT) and for diagnosis of cancer (fluorescence diagnosis, FD). PDT is approved for several cancer indications and FD has recently been approved for diagnosis of bladder cancer. The photosensitizers used are in most cases based on the porphyrin structure. These photosensitizers generally accumulate in cancer tissues to a higher extent than in the surrounding tissues and their fluorescing properties may be utilized for cancer detection. The photosensitizers may be chemically synthesized or induced endogenously by an intermediate in heme synthesis, 5‐aminolevulinic acid (5‐ALA) or 5‐ALA esters. The therapeutic effect is based on the formation of reactive oxygen species (ROS) upon activation of the photosensitizer by light. Singlet oxygen is assumed to be the most important ROS for the therapeutic outcome. The fluorescing properties of the photosenisitizers can be used to evaluate their intracellular localization and treatment effects. Some photosensitizers localize intracellularly in endocytic vesicles and upon light exposure induce a release of the contents of these vesicles, including externally added macromolecules, into the cytosol. This is the basis for a novel method for macromolecule activation, named photochemical internalization (PCI). PCI has been shown to potentiate the biological activity of a large variety of macromolecules and other molecules that do not readily penetrate the plasma membrane, including type I ribosome‐inactivating proteins, immunotoxins, gene‐encoding plasmids, adenovirus, peptide‐nucleic acids and the chemotherapeutic drug bleomycin. The background and present status of PDT, FD and PCI are reviewed.
Human Gene Therapy | 2000
Anders Høgset; Lina Prasmickaite; Torunn Elisabeth Tjelle; Kristian Berg
The development of methods for specific delivery of therapeutic genes into target tissues is an important issue for the further progress of in vivo gene therapy. In this article we report on a novel technology, named photochemical transfection, to use light to direct a precise delivery of therapeutic genes to a desired location. The technology makes use of photosensitizing compounds that localize mainly in the membranes of endosomes and lysosomes. On illumination these membrane structures will be destroyed, releasing endocytosed DNA into the cell cytosol. Using a green fluorescent protein gene as a model we show that illumination of photosensitizer-treated cells induces a substantial increase in the efficiency of transfection by DNA-poly-L-lysine complexes. Thus, in a human melanoma cell line the light treatment can increase the transfection efficiency more than 20-fold, reaching transfection levels of about 50% of the surviving cells. In this article various parameters of importance for the use of this technology are examined, and the potential use of the technology in gene therapy is discussed.
Current Pharmaceutical Biotechnology | 2007
Kristian Berg; Marco Folini; Lina Prasmickaite; Pål Kristian Selbo; Anette Bonsted; Birgit Engesæter; Nadia Zaffaroni; Anette Weyergang; Andreas Dietze; Gunhild M. Mælandsmo; Ernst Wagner; Ole Jacob Norum; Anders Høgset
The utilisation of macromolecules in the therapy of cancer and other diseases is becoming increasingly important. Recent advances in molecular biology and biotechnology have made it possible to improve targeting and design of cytotoxic agents, DNA complexes and other macromolecules for clinical applications. In many cases the targets of macromolecular therapeutics are intracellular. However, degradation of macromolecules in endocytic vesicles after uptake by endocytosis is a major intracellular barrier for the therapeutic application of macromolecules having intracellular targets of action. Photochemical internalisation (PCI) is a novel technology for the release of endocytosed macromolecules into the cytosol. The technology is based on the activation by light of photosensitizers located in endocytic vesicles to induce the release of macromolecules from the endocytic vesicles. Thereby, endocytosed molecules can be released to reach their target of action before being degraded in lysosomes. PCI has been shown to stimulate intracellular delivery of a large variety of macromolecules and other molecules that do not readily penetrate the plasma membrane, including type I ribosome-inactivating proteins (RIPs), DNA delivered as gene-encoding plasmids or by means of adenovirus or adeno-associated virus, peptide nucleic acids (PNAs) and chemotherapeutic agents such as bleomycin and in some cases doxorubicin. PCI of PNA may be of particular importance due to the low therapeutic efficacy of PNA in the absence of an efficient delivery technology and the 10-100-fold increased efficacy in combination with PCI. The efficacy and specificity of PCI of macromolecular therapeutics has been improved by combining the macromolecules with targeting moieties, such as the epidermal growth factor. In general, PCI can induce efficient light-directed delivery of macromolecules into the cytosol, indicating that it may have a variety of useful applications for site-specific drug delivery as for example in gene therapy, vaccination and cancer treatment.
British Journal of Cancer | 2002
Lina Prasmickaite; Anders Høgset; Pål Kristian Selbo; Birgit Engesæter; Marit Hellum; Kristian Berg
The development of methods for specific delivery of drugs is an important issue for many cancer therapy approaches. Most of macromolecular drugs are taken into the cell through endocytosis and, being unable to escape from endocytic vesicles, eventually are degraded there, which hinders their therapeutic usefulness. We have developed a method, called photochemical internalization, based on light-induced photochemical reactions, disrupting endocytic vesicles specifically within illuminated sites e.g. tumours. Here we present a new drug delivery concept based on photochemical internalization-principle – photochemical disruption of endocytic vesicles before delivery of macromolecules, leading to an instant endosomal release instead of detrimental stay of the molecules in endocytic vesicles. Previously we have shown that illumination applied after the treatment with macromolecules substantially improved their biological effect both in vitro and in vivo. Here we demonstrate that exposure to light before delivery of protein toxin gelonin improves gelonin effect in vitro much more than light after. However, in vitro transfection with reporter genes delivered by non-viral and adenoviral vectors is increased more than 10- and six-fold, respectively, by both photochemical internalization strategies. The possible cellular mechanisms involved, and the potential of this new method for practical application of photochemical internalization concept in cancer therapy are discussed.
Photochemistry and Photobiology | 2001
Lina Prasmickaite; Anders Høgset; Kristian Berg
Abstract Many potentially therapeutic macromolecules, e.g. transgenes used in gene therapy, are taken into the cells by endocytosis, and have to be liberated from endocytic vesicles in order to express a therapeutic function. To achieve this we have developed a new technology, named photochemical internalization (PCI), based on photochemical reactions inducing rupture of endocytic vesicles. The aim of this study was to clarify which properties of photosensitizers are important for obtaining the PCI effect improving gene transfection. The photochemical effect on transfection of human melanoma THX cells has been studied employing photosensitizers with different physicochemical properties and using two gene delivery vectors: the cationic polypeptide polylysine and the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). Photochemical treatment by photosensitizers that do not localize in endocytic vesicles (tetra[3-hydroxyphenyl]porphyrin and 5-aminolevulinic acid–induced protoporphyrin IX) do not stimulate transfection, irrespective of the gene delivery vector. In contrast, photosensitizers localized in endocytic vesicles stimulate polylysine-mediated transfection, and amphiphilic photosensitizers (disulfonated aluminium phthalocyanine [AlPcS2a] and meso-tetraphenylporphynes) show the strongest positive effect, inducing approximately 10-fold increase in transfection efficiency. In contrast, DOTAP-mediated transfection is inhibited by all photochemical treatments irrespective of the photosensitizer used. Neither AlPcS2a nor Photofrin affects the uptake of the transfecting DNA over the plasma membrane, therefore photochemical permeabilization of endocytic vesicles seems to be the most likely mechanism responsible for the positive PCI effect on gene transfection.
Cancer Gene Therapy | 2002
Anders Høgset; Birgit Engesæter; Lina Prasmickaite; Kristian Berg; Øystein Fodstad; Gunhild M. Mælandsmo
A main issue for further clinical progress of cancer gene therapy is to develop technologies for efficient and specific delivery of therapeutic genes to tumor cells. In this work, we describe a photochemical treatment that substantially improves gene delivery by adenovirus, one of the most efficient gene delivery vectors known. Transduction of two different cell lines was studied by microscopy, flow cytometry, and an enzymatic assay, employing a β-galactosidase–encoding adenovirus. The photochemical treatment induced a >20-fold increase in gene transduction, compared with conventional adenovirus infection, both when measured as the percentage of cells transduced, and when measured as the total β-galactosidase activity in the cell population. The effect was most pronounced at lower virus doses, where in some cases the same transduction efficiency could be achieved with a 20 times lower virus dose than with conventional infection. Photochemical treatments are already in clinical use for cancer therapy, and generally are very specific and have few side effects. The photochemical internalization technology described thus has a clear potential for improving both the efficiency and the specificity of gene delivery in cancer gene therapy, making it possible to achieve efficient site-specific in vivo gene delivery by adenoviral vectors.
Tumor Biology | 2002
Pål Kristian Selbo; Anders Høgset; Lina Prasmickaite; Kristian Berg
The present report reviews a number of recently published papers on a novel technology for the cytosolic delivery of macromolecules named photochemical internalisation (PCI). PCI is based upon the light activation of a drug (a photosensitiser) specifically located in the membrane of endocytic vesicles. Light which is absorbed by the photosensitiser induces the formation of reactive oxygen species, of which singlet oxygen (1O2) is the predominant form. Singlet oxygen oxidises biomolecules in the membranes of endosomes and lysosomes, resulting in a subsequent release of the contents of these compartments into the cytosol. Photosensitisers have a higher affinity for tumour tissues than for most normal tissues and are used in photodynamic therapy of various types of cancers. We have taken advantage of the PCI strategy to enhance the delivery of a variety of macromolecules, including ribosome-inactivating toxins, an immunotoxin, horse radish peroxidase, a ras peptide, RNA, oligonucleotides and protein encoding DNA, to the cytosol. Normally, a major intracellular barrier to the application of therapeutically interesting peptides and proteins or the application of DNA and RNA in gene therapy is the degradation of the macromolecules in the endocytic vesicles after uptake by endocytosis. Therefore, a photochemically induced rupture of endocytic vesicles and the subsequent cytosolic release of the macromolecules aids these molecules in escaping attack by the lysosomal hydrolases, thereby maintaining their biological activity. Thus, PCI represents a novel principle for the cytosolic delivery of biologically active macromolecules which overcomes the pivotal intracellular barrier of endosomes and lysosomes. In addition to being utilised as a new site-specific cancer therapy method, PCI can also be applied as a research tool for macromolecule delivery both in vitro and in vivo.
Journal of Gene Medicine | 2000
Lina Prasmickaite; Anders Høgset; Torunn Elisabeth Tjelle; Vibeke M. Olsen; Kristian Berg
Most non‐viral gene therapy vectors deliver transgenes into cells through the endocytic pathway. Lack of escape from endocytic vesicles in many cases constitutes a major barrier for delivery of the functional gene. We have developed a new technology named photochemical internalisation (PCI) to achieve light‐inducible cytosolic delivery of the transgene. The technology is based on a photochemical treatment employing photosensitisers localised in endocytic vesicles. In this work mechanisms involved in PCI‐mediated transfection (photochemical transfection) were studied.
PLOS ONE | 2010
Lina Prasmickaite; Birgit Engesæter; Nirma Skrbo; Tina Hellenes; Alexandr Kristian; Nina K. Oliver; Zhenhe Suo; Gunhild M. Mælandsmo
Background Malignant melanoma is an exceptionally aggressive, drug-resistant and heterogeneous cancer. Recently it has been shown that melanoma cells with high clonogenic and tumourigenic abilities are common, but markers distinguishing such cells from cells lacking these abilities have not been identified. There is therefore no definite evidence that an exclusive cell subpopulation, i.e. cancer stem cells (CSC), exists in malignant melanoma. Rather, it is suggested that multiple cell populations are implicated in initiation and progression of the disease, making it of importance to identify subpopulations with elevated aggressive properties. Methods and Findings In several other cancer forms, Aldehyde Dehydrogenase (ALDH), which plays a role in stem cell biology and resistance, is a valuable functional marker for identification of cells that show enhanced aggressiveness and drug-resistance. Furthermore, the presence of ALDH+ cells is linked to poor clinical prognosis in these cancers. By analyzing cell cultures, xenografts and patient biopsies, we showed that aggressive melanoma harboured a large, distinguishable ALDH+ subpopulation. In vivo, ALDH+ cells gave rise to ALDH− cells, while the opposite conversion was rare, indicating a higher abilities of ALDH+ cells to reestablish tumour heterogeneity with respect to the ALDH phenotype. However, both ALDH+ and ALDH− cells demonstrated similarly high abilities for clone formation in vitro and tumour initiation in vivo. Furthermore, both subpopulations showed similar sensitivity to the anti-melanoma drugs, dacarbazine and lexatumumab. Conclusions These findings suggest that ALDH does not distinguish tumour-initiating and/or therapy-resistant cells, implying that the ALDH phenotype is not associated with more-aggressive subpopulations in malignant melanoma, and arguing against ALDH as a “universal” marker. Besides, it was shown that the ability to reestablish tumour heterogeneity is not necessarily linked to the more aggressive phenotype.
Experimental Cell Research | 2008
Germana Rappa; Javier Mercapide; Fabio Anzanello; Lina Prasmickaite; Yaguang Xi; Jingfang Ju; Øystein Fodstad; Aurelio Lorico
Malignant tumors comprise a small proportion of cancer-initiating cells (CIC), capable of sustaining tumor formation and growth. CIC are the main potential target for anticancer therapy. However, the identification of molecular therapeutic targets in CIC isolated from primary tumors is an extremely difficult task. Here, we show that after years of passaging under differentiating conditions, glioblastoma, mammary carcinoma, and melanoma cell lines contained a fraction of cells capable of forming spheroids upon in vitro growth under stem cell-like conditions. We found an increased expression of surface markers associated with the stem cell phenotype and of oncogenes in cell lines and clones cultured as spheroids vs. adherent cultures. Also, spheroid-forming cells displayed increased tumorigenicity and an altered pattern of chemosensitivity. Interestingly, also from single retrovirally marked clones, it was possible to isolate cells able to grow as spheroids and associated with increased tumorigenicity. Our findings indicate that short-term selection and propagation of CIC as spheroid cultures from established cancer cell lines, coupled with gene expression profiling, represents a suitable tool to study and therapeutically target CIC: the notion of which genes have been down-regulated during growth under differentiating conditions will help find CIC-associated therapeutic targets.