Linbin Zhou
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Linbin Zhou.
Science of The Total Environment | 2017
Jiajun Li; Xin Jiang; Gang Li; Zhiyou Jing; Linbin Zhou; Zhixin Ke; Yehui Tan
We investigated picoplankton distribution patterns and environmental variables along an east-to-west transect in the northeastern South China Sea (SCS) during late winter 2016, giving us the opportunity to examine the impacts of the Kuroshio intrusion and the associated eddies. The results indicated that the subsurface (50-75m) phytoplankton biomass chlorophyll (Chl a) maximum (SCM) disappeared and was replaced by higher Chl a in the middle part of the transect due to the impacts of the Kuroshio intrusion and mesoscale eddies. Both flow cytometry and pyrosequencing data revealed that picoplankton abundance and community structure were significantly influenced by perturbations in complex physical processes. Picoeukaryotes represented most of the total phytoplankton biomass, and their maximum abundance (>104cellsmL-1) occurred within cyclonic eddy-affected regions (Stations 11 and 12), whereas the abundance of Prochlorococcus was the lowest in these regions. Prochlorococcus showed a higher abundance in the Kuroshio-affected area, while Synechococcus was mostly distributed at the upper well-lit depths, with its maximum abundance observed in surface waters (0-30m) adjacent to the cyclonic eddy center. Heterotrophic bacteria (HBA) displayed high abundance along the transect, consistent with the total phytoplankton biomass. Phylogenetic analysis revealed 26 bacterial phyla, with major components belonging to Proteobacteria, Cyanobacteria, Actinobacteria, and Bacteroidetes, as well as SAR406. Notably, relatively more Rhodobacterales, Flavobacteriales, Alteromonadales, and Vibrionales that were distributed in surface waters of the cyclonic eddy center were specifically associated with the phytoplankton (mainly picoeukaryotes) bloom. Our study highlights the impacts of the Kuroshio intrusion in regulating the microbial ecology of the northeastern SCS and the potential coupling between phytoplankton and bacteria.
Acta Oceanologica Sinica | 2014
Zifeng Hu; Yehui Tan; Xingyu Song; Linbin Zhou; Xiping Lian; Liangmin Huang; Yinghui He
Mesoscale eddies have been suggested to have an impact on biological carbon fixation in the South China Sea (SCS). However, their overall contribution to primary production during the spring inter-monsoon period is still unknown. Based on large-scale biological and environmental in situ observations and synchronous remote sensing data, the distribution patterns of phytoplankton biomass and the primary production, and the role of mesoscale eddies in regulating primary production in different eddy-controlled waters were investigated. The results suggested that the surface chlorophyll a concentrations and water column integrated primary production (IPP) are significantly higher in cyclonic eddies and lower in the anticyclonic eddies as compared to that in non-eddy waters. Although eddies could affect various environmental factors, such as nutrients, temperature and light availability, nutrient supply is suggested to be the most important one through which mesoscale eddies regulated the distribution patterns of phytoplankton biomass and primary production. The estimated IPP in cyclonic and anticyclonic eddies are about 29.5% higher and 16.6% lower than the total average in the whole study area, respectively, indicating that the promotion effect of mesoscale cold eddies on the primary production was much stronger than the inhibition effect of the warm eddies per unit area. Overall, mesoscale eddies are crucial physical processes that affect the biological carbon fixation and the distribution pattern of primary production in the SCS open sea, especially during the spring inter-monsoon period.
Marine Biology Research | 2015
Linbin Zhou; Liangmin Huang; Yehui Tan; Xiping Lian; Kaizhi Li
Abstract To examine zooplankton responses to the Pearl River plume (PRP) and coastal upwelling on the northern shelf of the South China Sea (SCS), zooplankton (>160 µm) were investigated in the northeastern SCS during 30 June to 11 July 2008. Zooplankton biomass size spectra (BSS) were constructed to describe zooplankton communities. The BSS parameters such as intercept and slope values were 8.659 ± 0.727 and −0.816 ± 0.074, respectively. On the basis of the BSS parameters, the sampling sites were classified into two main groups, which corresponded to the plume- and upwelling-affected areas, respectively. In addition, a positive correlation between zooplankton and phytoplankton abundance (P < 0.05) was observed in the study waters. These results indicate that (1) zooplankton BSS could be used as an indicator for distinguishing the physical processes, and (2) the PRP and coastal upwelling could regulate zooplankton communities differently through altering nutrient supply for the phytoplankton. The BSS slopes were flatter than expected for a steady-state community and the dominance of jellyfish in the larger size fractions indicated that an energy accumulation in gelatinous organisms occurred in the study waters. Since gelatinous organisms are not food for fish, this energy accumulation may be detrimental to the fishery production in the study area.
Oceanological and Hydrobiological Studies | 2015
Rongjun Shi; Gang Li; Linbin Zhou; Jiaxing Liu; Yehui Tan
Abstract Effects of marine aluminum (Al) on phytoplankton are controversial, making it important to elucidate the mechanisms underlying Al effects. This study was aimed at identifying the effects of Al on the growth, chlorophyll a (chl a) content and the antioxidant mechanism of cyanobacteria Synechococcus sp. WH7803. The growth rate increased from 0.33 to 0.52 d-1 in media with the increasing Al concentration from 0.2 (control) to 20 μmol l-1 and almost saturated to 0.44 d-1 at ~ 0.5 μmol Al l-1. The higher growth resulted in the higher biomass in both stationary and decay phases in the conditions of higher Al content. Chl a per cell reached 10.19 μg cell-1 in the exponential phase at 20 μmol Al l-1, approximately 1.6 and 3.1 times higher than those in stationary and decay phases, respectively, and chl a per cell showed a similar pattern as a growth rate when plotted with Al content. Al addition increased the cellular methane dicarboxylic aldehyde (MDA) content in the exponential phase and decreased the superoxide dismutase (SOD) activity in the decay phase. In particular, our results indicated a positive relationship between chl a per cell and the growth rate, suggesting the stimulation of increasing Al on the growth of Synechococcus is related to the enhancement of cellular chl a content.
Journal of Inorganic Biochemistry | 2017
Linbin Zhou; Jiaxing Liu; Shuai Xing; Yehui Tan; Liangmin Huang
Compared to extensive studies reporting the aluminum (Al) toxicity to terrestrial plants and freshwater organisms, very little is known about how marine phytoplankton responds to Al in the field. Here we report the marine phytoplankton responses to Al enrichment in the South China Sea (SCS) using on-deck bottle incubation experiments during eight cruises from May 2010 to November 2013. Generally, Al addition alone enhanced the growth of diatom and Trichodesmium, and nitrogen fixation, but it inhibited the growth of dinoflagellates and Synechococcus. Nevertheless, Al addition alone did not influence the chlorophyll a concentration of the entire phytoplankton assemblages. By adding nitrate and phosphate simultaneously, Al enrichment led to substantial increases in chlorophyll a concentration (especially that of the picophytoplankton<3μm), and cell abundances of diatom and photosynthetic picoeukaryotes. These results indicate varied responses of phytoplankton in different size fractions and taxonomic groups to Al enrichment. Further, by simultaneously adding different macronutrients and/or sufficient trace metals including iron, we found that the phytoplankton responses to Al enrichment were relevant to nutrients coexisting in the environment. Al enrichment may give some phytoplankton a competitive edge over using nutrients, especially the limited ones. The possible influences of Al on the competitors and grazers (predators) of some phytoplankton might indirectly contribute to the positive responses of the phytoplankton to Al enrichment. Our results indicate that Al may influence marine carbon cycle by impacting phytoplankton growth and structure in natural seawater.
Acta Oceanologica Sinica | 2017
Jiaxing Liu; Linbin Zhou; Yehui Tan; Qiong Wang; Zifeng Hu; Jiajun Li; Xin Jiang; Zhixin Ke
To understand the distribution of aluminum (Al) under the influence of mesocale eddies in the western South China Sea (SCS), sea level anomaly, geostrophic current, environmental parameters and reactive Al were investigated in the western SCS in August 2013. The highest reactive Al concentration ((180±64) nmol/L) was observed in the surface waters, indicating a substantial atmospheric input. Vertically, the reactive Al decreased from the surface high concentration to the subsurface minima at the depth of chlorophyll a (Chl a) maxima and then increased again with depth at most of the stations. The average concentration of reactive Al in the upper 100 m water column was significantly lower in the cyclonic eddy ((137±6) nmol/L) as compared with that in the noneddy waters ((180±21) nmol/L). By contrast, the average concentrations of Chl a and silicate in the upper 100 m water column were higher in the cyclonic eddy and lower in the anticyclonic eddy. There was a significant negative correlation between the average concentrations of reactive Al and Chl a in the upper 100 m water column. The vertical distribution of reactive Al and the negative correlation between reactive Al and Chl a both suggest that the reactive Al in the upper water column was significantly influenced by biological removal processes. Our results indicate that mesoscale eddies could regulate the distribution of reactive Al by influencing the primary production and phytoplankton community structure in the western SCS.
Marine Pollution Bulletin | 2018
Jiaxing Liu; Linbin Zhou; Zhixin Ke; Gang Li; Rongjun Shi; Yehui Tan
Few studies focus on the effects of aluminum (Al) on marine nitrogen-fixing cyanobacteria, which play important roles in the ocean nitrogen cycling. To examine the effects of Al on the nitrogen-fixing cyanobacteria, bioassay experiments in the oligotrophic South China Sea (SCS) and culture of Crocosphaera watsonii in the laboratory were conducted. Field data showed that 200 nM Al stimulated the growth and the nitrogenase gene expression of Trichodesmium and unicellular diazotrophic cyanobacterium group A, and the nitrogen fixation rates of the whole community. Laboratory experiments demonstrated that Al stimulated the growth and nitrogen fixation of C. watsonii under phosphorus limited conditions. Both field and laboratory results indicated that Al could stimulate the growth of diazotrophs and nitrogen fixation in oligotrophic oceans such as the SCS, which is likely related to the utilization of phosphorus, implying that Al plays an important role in the ocean nitrogen and carbon cycles by influencing nitrogen fixation.
Biogeochemistry | 2018
Linbin Zhou; Yehui Tan; Liangmin Huang; Claude Fortin; Peter G. C. Campbell
In contrast to substantial studies and established knowledge of aluminum (Al) effects (mainly toxicity) on freshwater organisms and terrestrial plants, and even on human health, only a few studies of Al effects on marine organisms have been reported, and our understanding of the role of Al in marine biogeochemistry is limited. In this paper, we review the results of both field and laboratory experiments on the effects of Al on marine organisms, including Al toxicity to marine phytoplankton and the beneficial effects of Al on marine phytoplankton growth, and we discuss possible links of Al to the biological pump and the global carbon cycle. We propose a revised Iron (Fe) Hypothesis, i.e., the Fe–Al Hypothesis that introduces the idea that Al as well as Fe play an important role in the glacial-interglacial change in atmospheric CO2 concentrations and climate change. We propose that Al could not only facilitate Fe utilization, dissolved organic phosphorus utilization and nitrogen fixation by marine phytoplankton, enhancing phytoplankton biomass and carbon fixation in the upper oceans, but also reduce the decomposition and decay of biogenic matter. As a result, Al allows potentially more carbon to be exported and sequestered in the ocean depths through the biological pump. We also propose that Al binds to superoxide to form an Al-superoxide complex, which could catalyze the reduction of Fe(III) to Fe(II) and thus facilitate Fe utilization by marine phytoplankton and other microbes. Further ocean fertilization experiments with Fe and Al are suggested, to clarify the role of Al in the stimulation of phytoplankton growth and carbon sequestration in the ocean depths.
Marine Pollution Bulletin | 2017
Jiajun Li; Xin Jiang; Zhiyou Jing; Gang Li; Zuozhi Chen; Linbin Zhou; Chunyu Zhao; Jiaxing Liu; Yehui Tan
In this study, we used flow cytometry and 16S rRNA gene pyrosequencing to investigate bacterioplankton (heterotrophic bacteria and picocyanobacteria) abundance and community structure in surface waters along the Pearl River Estuary. The results showed significant differences in bacterioplankton dynamics between fresh- and saltwater sites and between wet and dry season. Synechococcus constituted the majority of picocyanobacteria in both seasons. During the wet season, Synechococcus reached extremely high abundance at the mouth of the estuary, and heterotrophic bacteria were highly abundant (>106cellsml-1) throughout the studied region. At the same time, bacterioplankton decreased dramatically during the dry season. Pyrosequencing data indicated that salinity was a key parameter in shaping microbial community structure during both seasons. Phytoplankton was also an important factor; the proportion of Synechococcus and Rhodobacteriales was elevated at the frontal zone with higher chlorophyll a during the wet season, whereas Synechococcus were markedly reduced during the dry season.
Acta Oceanologica Sinica | 2017
Xiping Lian; Yehui Tan; Liangmin Huang; Linbin Zhou
An extreme persistent cold anomaly was prevailing in the South China Sea in February 2008. In order to understand the effect of the cold anomaly on zooplankton community, the zooplankton composition, abundance and biomass were analyzed in the northern South China Sea in August 2007 and August 2008. A total of 467 zooplankton species representing 16 groups were identified, with 275 species in August 2007 and 351 in August 2008. Copepods were the most dominant zooplankton group in the study area. Compared with 2007, a dramatic decline was observed in the abundance of four dominant copepod species: Subeucalanus subcrassus, Temora discaudata, Nannocalanus minor and Temora turbinata in 2008. Moreover, zooplankton abundance declined from 133.37 ind./m3 in August 2007 to 75.49 ind./m3 in August 2008. In contrast, the abundance of medusa, such as Diphyes chamissonis, and tunicate, such as Doliolum denticulatum and Dolioletta gegenbauri, increased during the same season. Cluster analysis showed that there was a difference in zooplankton community structure between the two years. These variations in zooplankton communities were indicative of an anomalous oceanographic condition along with the extreme cold event in 2008.