Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linchuan Liu is active.

Publication


Featured researches published by Linchuan Liu.


Plant Physiology | 2012

Nitric Oxide and Protein S-Nitrosylation Are Integral to Hydrogen Peroxide-Induced Leaf Cell Death in Rice

Aihong Lin; Yiqin Wang; Jiuyou Tang; Peng Xue; Chunlai Li; Linchuan Liu; Bin Hu; Fuquan Yang; Gary J. Loake; Chengcai Chu

Nitric oxide (NO) is a key redox-active, small molecule involved in various aspects of plant growth and development. Here, we report the identification of an NO accumulation mutant, nitric oxide excess1 (noe1), in rice (Oryza sativa), the isolation of the corresponding gene, and the analysis of its role in NO-mediated leaf cell death. Map-based cloning revealed that NOE1 encoded a rice catalase, OsCATC. Furthermore, noe1 resulted in an increase of hydrogen peroxide (H2O2) in the leaves, which consequently promoted NO production via the activation of nitrate reductase. The removal of excess NO reduced cell death in both leaves and suspension cultures derived from noe1 plants, implicating NO as an important endogenous mediator of H2O2-induced leaf cell death. Reduction of intracellular S-nitrosothiol (SNO) levels, generated by overexpression of rice S-nitrosoglutathione reductase gene (GSNOR1), which regulates global levels of protein S-nitrosylation, alleviated leaf cell death in noe1 plants. Thus, S-nitrosylation was also involved in light-dependent leaf cell death in noe1. Utilizing the biotin-switch assay, nanoliquid chromatography, and tandem mass spectrometry, S-nitrosylated proteins were identified in both wild-type and noe1 plants. NO targets identified only in noe1 plants included glyceraldehyde 3-phosphate dehydrogenase and thioredoxin, which have been reported to be involved in S-nitrosylation-regulated cell death in animals. Collectively, our data suggest that both NO and SNOs are important mediators in the process of H2O2-induced leaf cell death in rice.


Proceedings of the National Academy of Sciences of the United States of America | 2014

OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice

Chengzhen Liang; Yiqin Wang; Yana Zhu; Jiuyou Tang; Bin Hu; Linchuan Liu; Shujun Ou; Hongkai Wu; Xiaohong Sun; Jinfang Chu; Chengcai Chu

Significance Premature leaf senescence is known to decrease rice yield severely, but the molecular mechanism underlying this relationship remains largely unknown. Similarly, although abscisic acid (ABA)-induced leaf senescence has long been observed, the mechanism of this pathway has yet to be determined. In this study we identified and characterized a dominant premature leaf senescence mutant, prematurely senile 1 (ps1-D). The data demonstrated both that PS1/Oryza sativa NAC (no apical meristem, Arabidopsis ATAF1/2, and cup-shaped cotyledon2)-like, activated by apetala3/pistillata (OsNAP) is an ideal marker of natural senescence onset and that it functions as an important link between ABA and leaf senescence in rice. Furthermore, reduced OsNAP expression led to extended grain filling and an improved seed-setting rate, which significantly enhanced the grain yield. Thus, fine-tuning OsNAP expression should be a means of improving rice yield. It has long been established that premature leaf senescence negatively impacts the yield stability of rice, but the underlying molecular mechanism driving this relationship remains largely unknown. Here, we identified a dominant premature leaf senescence mutant, prematurely senile 1 (ps1-D). PS1 encodes a plant-specific NAC (no apical meristem, Arabidopsis ATAF1/2, and cup-shaped cotyledon2) transcriptional activator, Oryza sativa NAC-like, activated by apetala3/pistillata (OsNAP). Overexpression of OsNAP significantly promoted senescence, whereas knockdown of OsNAP produced a marked delay of senescence, confirming the role of this gene in the development of rice senescence. OsNAP expression was tightly linked with the onset of leaf senescence in an age-dependent manner. Similarly, ChIP-PCR and yeast one-hybrid assays demonstrated that OsNAP positively regulates leaf senescence by directly targeting genes related to chlorophyll degradation and nutrient transport and other genes associated with senescence, suggesting that OsNAP is an ideal marker of senescence onset in rice. Further analysis determined that OsNAP is induced specifically by abscisic acid (ABA), whereas its expression is repressed in both aba1 and aba2, two ABA biosynthetic mutants. Moreover, ABA content is reduced significantly in ps1-D mutants, indicating a feedback repression of OsNAP on ABA biosynthesis. Our data suggest that OsNAP serves as an important link between ABA and leaf senescence. Additionally, reduced OsNAP expression leads to delayed leaf senescence and an extended grain-filling period, resulting in a 6.3% and 10.3% increase in the grain yield of two independent representative RNAi lines, respectively. Thus, fine-tuning OsNAP expression should be a useful strategy for improving rice yield in the future.


Plant Physiology | 2011

LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice.

Bin Hu; Chengguang Zhu; Feng Li; Jiuyou Tang; Yiqin Wang; Aihong Lin; Linchuan Liu; Ronghui Che; Chengcai Chu

Although phosphate (Pi) starvation signaling is well studied in Arabidopsis (Arabidopsis thaliana), it is still largely unknown in rice (Oryza sativa). In this work, a rice leaf tip necrosis1 (ltn1) mutant was identified and characterized. Map-based cloning identified LTN1 as LOC_Os05g48390, the putative ortholog of Arabidopsis PHO2, which plays important roles in Pi starvation signaling. Analysis of transgenic plants harboring a LTN1 promoter::β-glucuronidase construct revealed that LTN1 was preferentially expressed in vascular tissues. The ltn1 mutant exhibited increased Pi uptake and translocation, which led to Pi overaccumulation in shoots. In association with enhanced Pi uptake and transport, some Pi transporters were up-regulated in the ltn1 mutant in the presence of sufficient Pi. Furthermore, the elongation of primary and adventitious roots was enhanced in the ltn1 mutant under Pi starvation, suggesting that LTN1 is involved in Pi-dependent root architecture alteration. Under Pi-sufficient conditions, typical Pi starvation responses such as stimulation of phosphatase and RNase activities, lipid composition alteration, nitrogen assimilation repression, and increased metal uptake were also activated in ltn1. Moreover, analysis of OsmiR399-overexpressing plants showed that LTN1 was down-regulated by OsmiR399. Our results strongly indicate that LTN1 is a crucial Pi starvation signaling component downstream of miR399 involved in the regulation of multiple Pi starvation responses in rice.


Nature Genetics | 2015

Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies

Bin Hu; Wei Wang; Shujun Ou; Jiuyou Tang; Hua Li; Ronghui Che; Zhihua Zhang; Xuyang Chai; Hongru Wang; Yiqin Wang; Chengzhen Liang; Linchuan Liu; Zhongze Piao; Qiyun Deng; Kun Deng; Chi Xu; Yan Liang; Lianhe Zhang; Li L; Chengcai Chu

Asian cultivated rice (Oryza sativa L.) consists of two main subspecies, indica and japonica. Indica has higher nitrate-absorption activity than japonica, but the molecular mechanisms underlying that activity remain elusive. Here we show that variation in a nitrate-transporter gene, NRT1.1B (OsNPF6.5), may contribute to this divergence in nitrate use. Phylogenetic analysis revealed that NRT1.1B diverges between indica and japonica. NRT1.1B-indica variation was associated with enhanced nitrate uptake and root-to-shoot transport and upregulated expression of nitrate-responsive genes. The selection signature of NRT1.1B-indica suggests that nitrate-use divergence occurred during rice domestication. Notably, field tests with near-isogenic and transgenic lines confirmed that the japonica variety carrying the NRT1.1B-indica allele had significantly improved grain yield and nitrogen-use efficiency (NUE) compared to the variety without that allele. Our results show that variation in NRT1.1B largely explains nitrate-use divergence between indica and japonica and that NRT1.1B-indica can potentially improve the NUE of japonica.


Plant Molecular Biology | 2014

OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice

Citao Liu; Bigang Mao; Shujun Ou; Wei Wang; Linchuan Liu; Yanbin Wu; Chengcai Chu; Xiping Wang

The bZIP transcription factor (TF) family plays an important role in the abscisic acid (ABA) signaling pathway of abiotic stress in plants. We here report the cloning and characterization of OsbZIP71, which encodes a rice bZIP TF. Functional analysis showed that OsbZIP71 is a nuclear-localized protein that specifically binds to the G-box motif, but has no transcriptional activity both in yeast and rice protoplasts. In yeast two-hybrid assays, OsbZIP71 can form both homodimers and heterodimers with Group C members of the bZIP gene family. Expression of OsbZIP71 was strongly induced by drought, polyethylene glycol (PEG), and ABA treatments, but repressed by salt treatment. OsbZIP71 overexpressing (p35S::OsbZIP71) rice significantly improved tolerance to drought, salt and PEG osmotic stresses. In contrast, RNAi knockdown transgenic lines were much more sensitive to salt, PEG osmotic stresses, and also ABA treatment. Inducible expression (RD29A::OsbZIP71) lines were significantly improved their tolerance to PEG osmotic stresses, but hypersensitivity to salt, and insensitivity to ABA. Real-time PCR analysis revealed that the abiotic stress-related genes, OsVHA-B, OsNHX1, COR413-TM1, and OsMyb4, were up-regulated in overexpressing lines, while these same genes were down-regulated in RNAi lines. Chromatin immunoprecipitation analysis confirmed that OsbZIP71 directly binds the promoters of OsNHX1 and COR413-TM1 in vivo. These results suggest that OsbZIP71 may play an important role in ABA-mediated drought and salt tolerance in rice.


The Plant Cell | 2012

DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice.

Hongning Tong; Linchuan Liu; Yun Jin; Lin Du; Yanhai Yin; Qian Qian; Lihuang Zhu; Chengcai Chu

DLT plays a positive role in brassinosteroid (BR) signaling, but the mechanism of its action is not fully understood. This study identifies a GSK3-like kinase (GSK2) as a critical negative regulator of BR signaling in rice and provides evidence that GSK2 phosphorylates and regulates DLT to regulate BR responses. In Arabidopsis thaliana, the GSK3/SHAGGY-like kinase BRASSINOSTEROID-INSENSITIVE2 (BIN2) plays a critical role in the brassinosteroid (BR) signaling pathway by negatively regulating the activities of bri1-EMS-SUPPRESSOR1/BRASSINAZOLE-RESISTANT1 family transcription factors that regulate the expression of downstream BR-responsive genes. In this study, we analyzed the function of a rice (Oryza sativa) GSK3/SHAGGY-like kinase (GSK2), which is one of the orthologs of BIN2. Overexpression of GSK2 (Go) led to plants with typical BR loss-of-function phenotypes, and suppression of GSK2 resulted in enhanced BR signaling phenotypes. DWARF AND LOW-TILLERING (DLT) is a positive regulator that mediates several BR responses in rice. Suppression of DLT can enhance the phenotypes of BR receptor mutant d61-1, and overexpression of DLT obviously suppressed the BR loss-of-function phenotypes of both d61-1 and Go, suggesting that DLT functions downstream of GSK2 to modulate BR responses. Indeed, GSK2 can interact with DLT and phosphorylate DLT. Moreover, brassinolide treatment can induce the dephosphorylation of DLT, leading to the accumulation of dephosphorylated DLT protein. In GSK2 transgenic plants, the DLT phosphorylation level is dictated by the GSK2 level. These results demonstrate that DLT is a GSK2 substrate, further reinforcing that the BIN2/GSK2 kinase has multiple substrates that carry out various BR responses.


The Plant Cell | 2014

Brassinosteroid Regulates Cell Elongation by Modulating Gibberellin Metabolism in Rice

Hongning Tong; Yunhua Xiao; Dapu Liu; Shaopei Gao; Linchuan Liu; Yanhai Yin; Yun Jin; Qian Qian; Chengcai Chu

Physiological BR promotes cell elongation by inducing GA accumulation through activation of GA3ox-2 expression, whereas exogenously applied high concentrations of BR inhibit cell elongation by repressing GA level. As a feedback mechanism, GA extensively inhibits BR biosynthesis and signaling. Brassinosteroid (BR) and gibberellin (GA) are two predominant hormones regulating plant cell elongation. A defect in either of these leads to reduced plant growth and dwarfism. However, their relationship remains unknown in rice (Oryza sativa). Here, we demonstrated that BR regulates cell elongation by modulating GA metabolism in rice. Under physiological conditions, BR promotes GA accumulation by regulating the expression of GA metabolic genes to stimulate cell elongation. BR greatly induces the expression of D18/GA3ox-2, one of the GA biosynthetic genes, leading to increased GA1 levels, the bioactive GA in rice seedlings. Consequently, both d18 and loss-of-function GA-signaling mutants have decreased BR sensitivity. When excessive active BR is applied, the hormone mostly induces GA inactivation through upregulation of the GA inactivation gene GA2ox-3 and also represses BR biosynthesis, resulting in decreased hormone levels and growth inhibition. As a feedback mechanism, GA extensively inhibits BR biosynthesis and the BR response. GA treatment decreases the enlarged leaf angles in plants with enhanced BR biosynthesis or signaling. Our results revealed a previously unknown mechanism underlying BR and GA crosstalk depending on tissues and hormone levels, which greatly advances our understanding of hormone actions in crop plants and appears much different from that in Arabidopsis thaliana.


Nature plants | 2016

Control of grain size and rice yield by GL2 -mediated brassinosteroid responses

Ronghui Che; Hongning Tong; Bihong Shi; Yuqin Liu; Shanru Fang; Dapu Liu; Yunhua Xiao; Bin Hu; Linchuan Liu; Hongru Wang; Mingfu Zhao; Chengcai Chu

Given the continuously growing population and decreasing arable land, food shortage is becoming one of the most serious global problems in this century1. Grain size is one of the determining factors for grain yield and thus is a prime target for genetic breeding2,3. Although a number of quantitative trait loci (QTLs) associated with rice grain size have been identified in the past decade, mechanisms underlying their functions remain largely unknown4,5. Here we show that a grain-length-associated QTL, GL2, has the potential to improve grain weight and grain yield up to 27.1% and 16.6%, respectively. We also show that GL2 is allelic to OsGRF4 and that it contains mutations in the miR396 targeting sequence. Because of the mutation, GL2 has a moderately increased expression level, which consequently activates brassinosteroid responses by upregulating a large number of brassinosteroid-induced genes to promote grain development. Furthermore, we found that GSK2, the central negative regulator of rice brassinosteroid signalling, directly interacts with OsGRF4 and inhibits its transcription activation activity to mediate the specific regulation of grain length by the hormone. Thus, this work demonstrates the feasibility of modulating specific brassinosteroid responses to improve plant productivity.


The Plant Cell | 2012

The Histone Methyltransferase SDG724 Mediates H3K36me2/3 Deposition at MADS50 and RFT1 and Promotes Flowering in Rice

Changhui Sun; Jun Fang; Taolan Zhao; Bo Xu; Fantao Zhang; Linchuan Liu; Jiuyou Tang; Genfa Zhang; Xiaojian Deng; Fan Chen; Qian Qian; Xiaofeng Cao; Chengcai Chu

In rice, the two florigens Hd3a and RFT1 are separated by only 11.5 kb in the genome. This study reveals that rice SDG724 specifically affects the histone H3 lysine 36 me2/3 level of RFT1 but not its close paralog Hd3a. Therefore, RFT1 and Hd3a have functionally diverged to control flowering time under long-day and short-day conditions partly via a fine-tuned epigenetic mechanism. Chromatin modifications affect flowering time in the long-day plant Arabidopsis thaliana, but the role of histone methylation in flowering time regulation of rice (Oryza sativa), a short-day plant, remains to be elucidated. We identified a late-flowering long vegetative phase1 (lvp1) mutant in rice and used map-based cloning to reveal that lvp1 affects the SET domain group protein 724 (SDG724). SDG724 functions as a histone methyltransferase in vitro and contributes to a major fraction of global histone H3 lysine 36 (H3K36) methylation in vivo. Expression analyses of flowering time genes in wild-type and lvp1 mutants revealed that Early heading date1, but not Heading date1, are misregulated in lvp1 mutants. In addition, the double mutant of lvp1 with photoperiod sensitivity5 (se5) flowered later than the se5 single mutant, indicating that lvp1 delays flowering time irrespective of photoperiod. Chromatin immunoprecipitation assays showed that lvp1 had reduced levels of H3K36me2/3 at MADS50 and RFT1. This suggests that the divergent functions of paralogs RFT1 and Hd3a, and of MADS50 and MADS51, are in part due to differential H3K36me2/3 deposition, which also correlates with higher expression levels of MADS50 and RFT1 in flowering promotion in rice.


Plant Journal | 2011

Semi‐dominant mutations in the CC‐NB‐LRR‐type R gene, NLS1, lead to constitutive activation of defense responses in rice

Jiuyou Tang; Xudong Zhu; Yiqin Wang; Linchuan Liu; Bo Xu; Feng Li; Jun Fang; Chengcai Chu

In this study, we characterized the semi-dominant mutant nls1-1D (necrotic leaf sheath 1) of rice, which displays spontaneous lesions, specifically on leaf sheaths, with a developmental pattern. nls1-1D plants also exhibited constitutively activated defense responses, including extensive cell death, excess hydrogen peroxide and salicylic acid (SA) accumulation, up-regulated expressions of pathogenesis-related genes, and enhanced resistance to bacterial pathogens. Map-based cloning revealed that NLS1 encodes a typical CC-NB-LRR-type protein in rice. The nls1-1D mutation causes a S367N substitution in the non-conserved region close to the GLPL motif of the NB domain. An adjacent S366T substitution was found in another semi-dominant mutant, nls1-2D, which exhibited the same phenotypes as nls1-1D. Combined analyses of wild-type plants transformed with the mutant NLS1 gene (nls1-1D), NLS1 RNAi and over-expression transgenic lines showed that nls1-2D is allelic to nls1-1D, and both mutations may cause constitutive auto-activation of the NLS1 R protein. Further real-time PCR analysis revealed that NLS1 is expressed constitutively in an age-dependent manner. In addition, because the morphology and constitutive defense responses of nls1-1D were not suppressed by blocking SA or NPR1 transcript accumulation, we suggest that NLS1 mediates both SA and NPR1-independent defense signaling pathways in rice.

Collaboration


Dive into the Linchuan Liu's collaboration.

Top Co-Authors

Avatar

Chengcai Chu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bin Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jiuyou Tang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yiqin Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hongning Tong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ronghui Che

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yunhua Xiao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shujun Ou

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Dapu Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge