Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chengcai Chu is active.

Publication


Featured researches published by Chengcai Chu.


Nature Genetics | 2009

Natural variation at the DEP1 locus enhances grain yield in rice

Xianzhong Huang; Qian Qian; Zhengbin Liu; Hongying Sun; Shuyuan He; Da Luo; Guangmin Xia; Chengcai Chu; Jiayang Li; Xiangdong Fu

Grain yield is controlled by quantitative trait loci (QTLs) derived from natural variations in many crop plants. Here we report the molecular characterization of a major rice grain yield QTL that acts through the determination of panicle architecture. The dominant allele at the DEP1 locus is a gain-of-function mutation causing truncation of a phosphatidylethanolamine-binding protein-like domain protein. The effect of this allele is to enhance meristematic activity, resulting in a reduced length of the inflorescence internode, an increased number of grains per panicle and a consequent increase in grain yield. This allele is common to many Chinese high-yielding rice varieties and likely represents a relatively recent introduction into the cultivated rice gene pool. We also show that a functionally equivalent allele is present in the temperate cereals and seems to have arisen before the divergence of the wheat and barley lineages.


Plant Molecular Biology | 2008

Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice

Qiuyun Wang; Yucheng Guan; Yaorong Wu; Honglin Chen; Fan Chen; Chengcai Chu

DREB transcription factors play key roles in plant stress signalling transduction pathway, they can specifically bind to DRE/CRT element (G/ACCGAC) and activate the expression of many stress inducible genes. Here, a novel rice DREB transcription factor, OsDREB1F, was cloned and characterised via subtractive suppression hybridisation (SSH) from upland rice. Expression analysis revealed that OsDREB1F gene was induced by salt, drought, cold stresses, and also ABA application, but not by pathogen, wound, and H2O2. Subcellular localization results indicated that OsDREB1F localizes in nucleus. Yeast activity assay demonstrated that OsDREB1F gene encodes a transcription activator, and can specifically bind to DRE/CRT but not to ABRE element. Transgenic plants harbouring OsDREB1F gene led to enhanced tolerance to salt, drought, and low temperature in both rice and Arabidopsis. The further characterisation of OsDREB1F-overexpressing Arabidopsis showed that, besides activating the expression of COR genes which contain DRE/CRT element in their upstream promoter regions, the expression of rd29B and RAB18 genes were also activated, suggested that OsDREB1F may also participate in ABA-dependent pathway.


Plant Physiology | 2012

Nitric Oxide and Protein S-Nitrosylation Are Integral to Hydrogen Peroxide-Induced Leaf Cell Death in Rice

Aihong Lin; Yiqin Wang; Jiuyou Tang; Peng Xue; Chunlai Li; Linchuan Liu; Bin Hu; Fuquan Yang; Gary J. Loake; Chengcai Chu

Nitric oxide (NO) is a key redox-active, small molecule involved in various aspects of plant growth and development. Here, we report the identification of an NO accumulation mutant, nitric oxide excess1 (noe1), in rice (Oryza sativa), the isolation of the corresponding gene, and the analysis of its role in NO-mediated leaf cell death. Map-based cloning revealed that NOE1 encoded a rice catalase, OsCATC. Furthermore, noe1 resulted in an increase of hydrogen peroxide (H2O2) in the leaves, which consequently promoted NO production via the activation of nitrate reductase. The removal of excess NO reduced cell death in both leaves and suspension cultures derived from noe1 plants, implicating NO as an important endogenous mediator of H2O2-induced leaf cell death. Reduction of intracellular S-nitrosothiol (SNO) levels, generated by overexpression of rice S-nitrosoglutathione reductase gene (GSNOR1), which regulates global levels of protein S-nitrosylation, alleviated leaf cell death in noe1 plants. Thus, S-nitrosylation was also involved in light-dependent leaf cell death in noe1. Utilizing the biotin-switch assay, nanoliquid chromatography, and tandem mass spectrometry, S-nitrosylated proteins were identified in both wild-type and noe1 plants. NO targets identified only in noe1 plants included glyceraldehyde 3-phosphate dehydrogenase and thioredoxin, which have been reported to be involved in S-nitrosylation-regulated cell death in animals. Collectively, our data suggest that both NO and SNOs are important mediators in the process of H2O2-induced leaf cell death in rice.


Plant Physiology | 2005

Loss of Function of OsDCL1 Affects MicroRNA Accumulation and Causes Developmental Defects in Rice

Bin Liu; Pingchuan Li; Xin Li; Chunyan Liu; Shouyun Cao; Chengcai Chu; Xiaofeng Cao

MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) are two types of noncoding RNAs involved in developmental regulation, genome maintenance, and defense in eukaryotes. The activity of Dicer or Dicer-like (DCL) proteins is required for the maturation of miRNAs and siRNAs. In this study, we cloned and sequenced 66 candidate rice (Oryza sativa) miRNAs out of 1,650 small RNA sequences (19 to approximately 25 nt), and they could be further grouped into 21 families, 12 of which are newly identified and three of which, OsmiR528, OsmiR529, and OsmiR530, have been confirmed by northern blot. To study the function of rice DCL proteins (OsDCLs) in the biogenesis of miRNAs and siRNAs, we searched genome databases and identified four OsDCLs. An RNA interference approach was applied to knock down two OsDCLs, OsDCL1 and OsDCL4, respectively. Strong loss of function of OsDCL1IR transformants that expressed inverted repeats of OsDCL1 resulted in developmental arrest at the seedling stage, and weak loss of function of OsDCL1IR transformants caused pleiotropic developmental defects. Moreover, all miRNAs tested were greatly reduced in OsDCL1IR but not OsDCL4IR transformants, indicating that OsDCL1 plays a critical role in miRNA processing in rice. In contrast, the production of siRNA from transgenic inverted repeats and endogenous CentO regions were not affected in either OsDCL1IR or OsDCL4IR transformants, suggesting that the production of miRNAs and siRNAs is via distinct OsDCLs.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Insights into salt tolerance from the genome of Thellungiella salsuginea.

Hua-Jun Wu; Zhonghui Zhang; Wang J; Dong-Ha Oh; Maheshi Dassanayake; Binghang Liu; Quanfei Huang; Hai-Xi Sun; Ran Xia; Yaorong Wu; Yi-Nan Wang; Zhao Yang; Yang Liu; Wan-Ke Zhang; Huawei Zhang; Jinfang Chu; Cunyu Yan; Shuang Fang; Zhang J; Yiqin Wang; Fengxia Zhang; Guodong Wang; Sang Yeol Lee; John M. Cheeseman; Bicheng Yang; Bo Li; Jiumeng Min; Linfeng Yang; Jun Wang; Chengcai Chu

Thellungiella salsuginea, a close relative of Arabidopsis, represents an extremophile model for abiotic stress tolerance studies. We present the draft sequence of the T. salsuginea genome, assembled based on ∼134-fold coverage to seven chromosomes with a coding capacity of at least 28,457 genes. This genome provides resources and evidence about the nature of defense mechanisms constituting the genetic basis underlying plant abiotic stress tolerance. Comparative genomics and experimental analyses identified genes related to cation transport, abscisic acid signaling, and wax production prominent in T. salsuginea as possible contributors to its success in stressful environments.


Journal of Biological Chemistry | 2009

S-Nitrosylation of AtSABP3 Antagonizes the Expression of Plant Immunity

Yiqin Wang; Angela Feechan; Byung-Wook Yun; Reza Shafiei; Andreas Hofmann; Paul Taylor; Peng Xue; Fuquan Yang; Zhen-Sheng Xie; Jacqueline A. Pallas; Chengcai Chu; Gary J. Loake

Changes in cellular redox status are a well established response across phyla following pathogen challenge. In this context, the synthesis of nitric oxide (NO) is a conspicuous feature of plants responding to attempted microbial infection and this redox-based regulator underpins the development of plant immunity. However, the associated molecular mechanism(s) have not been defined. Here we show that NO accretion during the nitrosative burst promotes increasing S-nitrosylation of the Arabidopsis thaliana salicylic acid-binding protein 3 (AtSABP3) at cysteine (Cys) 280, suppressing both binding of the immune activator, salicylic acid (SA), and the carbonic anhydrase (CA) activity of this protein. The CA function of AtSABP3 is required for the expression of resistance in the host against attempted pathogen infection. Therefore, inhibition of AtSBAP3 CA function by S-nitrosylation could contribute to a negative feedback loop that modulates the plant defense response. Thus, AtSABP3 is one of the first targets for S-nitrosylation in plants for which the biological function of this redox-based post-translational modification has been uncovered. These data provide a molecular connection between the changes in NO levels triggered by attempted pathogen infection and the expression of disease resistance.


Proceedings of the National Academy of Sciences of the United States of America | 2014

OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice

Chengzhen Liang; Yiqin Wang; Yana Zhu; Jiuyou Tang; Bin Hu; Linchuan Liu; Shujun Ou; Hongkai Wu; Xiaohong Sun; Jinfang Chu; Chengcai Chu

Significance Premature leaf senescence is known to decrease rice yield severely, but the molecular mechanism underlying this relationship remains largely unknown. Similarly, although abscisic acid (ABA)-induced leaf senescence has long been observed, the mechanism of this pathway has yet to be determined. In this study we identified and characterized a dominant premature leaf senescence mutant, prematurely senile 1 (ps1-D). The data demonstrated both that PS1/Oryza sativa NAC (no apical meristem, Arabidopsis ATAF1/2, and cup-shaped cotyledon2)-like, activated by apetala3/pistillata (OsNAP) is an ideal marker of natural senescence onset and that it functions as an important link between ABA and leaf senescence in rice. Furthermore, reduced OsNAP expression led to extended grain filling and an improved seed-setting rate, which significantly enhanced the grain yield. Thus, fine-tuning OsNAP expression should be a means of improving rice yield. It has long been established that premature leaf senescence negatively impacts the yield stability of rice, but the underlying molecular mechanism driving this relationship remains largely unknown. Here, we identified a dominant premature leaf senescence mutant, prematurely senile 1 (ps1-D). PS1 encodes a plant-specific NAC (no apical meristem, Arabidopsis ATAF1/2, and cup-shaped cotyledon2) transcriptional activator, Oryza sativa NAC-like, activated by apetala3/pistillata (OsNAP). Overexpression of OsNAP significantly promoted senescence, whereas knockdown of OsNAP produced a marked delay of senescence, confirming the role of this gene in the development of rice senescence. OsNAP expression was tightly linked with the onset of leaf senescence in an age-dependent manner. Similarly, ChIP-PCR and yeast one-hybrid assays demonstrated that OsNAP positively regulates leaf senescence by directly targeting genes related to chlorophyll degradation and nutrient transport and other genes associated with senescence, suggesting that OsNAP is an ideal marker of senescence onset in rice. Further analysis determined that OsNAP is induced specifically by abscisic acid (ABA), whereas its expression is repressed in both aba1 and aba2, two ABA biosynthetic mutants. Moreover, ABA content is reduced significantly in ps1-D mutants, indicating a feedback repression of OsNAP on ABA biosynthesis. Our data suggest that OsNAP serves as an important link between ABA and leaf senescence. Additionally, reduced OsNAP expression leads to delayed leaf senescence and an extended grain-filling period, resulting in a 6.3% and 10.3% increase in the grain yield of two independent representative RNAi lines, respectively. Thus, fine-tuning OsNAP expression should be a useful strategy for improving rice yield in the future.


Plant Molecular Biology | 2009

OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice

Zhao Yang; Yaorong Wu; Ye Li; Hong-Qing Ling; Chengcai Chu

Metallothioneins (MTs) are small, cysteine-rich, metal-binding proteins that may be involved in metal homeostasis and detoxification in both plants and animals. OsMT1a, encoding a type 1 metallothionein, was isolated via suppression subtractive hybridization from Brazilian upland rice (Oryza sativa L. cv. Iapar 9). Expression analysis revealed that OsMT1a predominantly expressed in the roots, and was induced by dehydration. Interestingly, the OsMT1a expression was also induced specifically by Zn2+ treatment. Both transgenic plants and yeasts harboring OsMT1a accumulated more Zn2+ than wild type controls, suggesting OsMT1a is most likely to be involved in zinc homeostasis. Transgenic rice plants overexpressing OsMT1a demonstrated enhanced tolerance to drought. The examination of antioxidant enzyme activities demonstrated that catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX) were significantly elevated in transgenic plants. Furthermore, the transcripts of several Zn2+-induced CCCH zinc finger transcription factors accumulated in OsMT1a transgenic plants, suggesting that OsMT1a not only participates directly in ROS scavenging pathway but also regulates expression of the zinc finger transcription factors via the alteration of Zn2+ homeostasis, which leads to improved plant stress tolerance.


Physiologia Plantarum | 2010

The redox switch: dynamic regulation of protein function by cysteine modifications.

Davide Spadaro; Byung-Wook Yun; Steven H. Spoel; Chengcai Chu; Yiqin Wang; Gary J. Loake

Reactive oxygen intermediates (ROIs) and reactive nitrogen intermediates (RNIs) have now become well established as important signalling molecules in physiological settings within microorganisms, mammals and plants. These intermediates are routinely synthesised in a highly controlled and transient fashion by NADPH-dependent enzymes, which constitute key regulators of redox signalling. Mild oxidants such as hydrogen peroxide (H(2)O(2)) and especially nitric oxide (NO) signal through chemical reactions with specific atoms of target proteins that result in covalent protein modifications. Specifically, highly reactive cysteine (Cys) residues of low pK(a) are a major site of action for these intermediates. The oxidation of target Cys residues can result in a number of distinct redox-based, post-translational modifications including S-nitrosylation, S-glutathionylation; and sulphenic acid, sulphinic acid and disulphide formation. Importantly, such modifications precisely regulate protein structure and function. Cys-based redox switches are now increasingly being found to underpin many different signalling systems and regulate physiological outputs across kingdoms.


Plant Journal | 2009

DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice

Hongning Tong; Yun Jin; Wenbo Liu; Feng Li; Jun Fang; Yanhai Yin; Qian Qian; Lihuang Zhu; Chengcai Chu

Rapid progress has been made regarding the understanding of brassinosteroid (BR) signaling in Arabidopsis. However, little is known about BR signaling in monotyledons. Here, we characterized a rice dwarf and low-tillering (dlt) mutant and cloned the corresponding gene via map-based cloning. DLT encodes a new member of the plant-specific GRAS family. The dwarf phenotype of dlt is similar to BR-deficient or signaling mutants in rice. In addition, both lamina bending and coleoptile elongation assays show that dlt is insensitive or much less responsive to brassinolide (BL), the most active BR, suggesting that DLT is involved in BR signaling. Consistent with this conclusion, the accumulation of transcripts of BR biosynthesis genes in the dlt mutant indicated that DLT is involved in feedback inhibition of BR biosynthesis genes. In addition, transcription of several other BR-regulated genes is altered in the dlt mutant. Finally, consistent with the fact that DLT is also negatively feedback-regulated by BR treatment, a gel mobility shift assay showed that OsBZR1 can bind to the DLT promoter through the BR-response element. Taken together, these studies have enabled us to identify a new signaling component that is involved in several specific BR responses in rice.

Collaboration


Dive into the Chengcai Chu's collaboration.

Top Co-Authors

Avatar

Yiqin Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jun Fang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hongning Tong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jiuyou Tang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bin Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Linchuan Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaofeng Cao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hongru Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shouyun Cao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wei Wang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge