Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linda Böhmert is active.

Publication


Featured researches published by Linda Böhmert.


Nanotoxicology | 2014

Analytically monitored digestion of silver nanoparticles and their toxicity on human intestinal cells

Linda Böhmert; Matthias Girod; Ulf Hansen; Ronald Maul; Patrick Knappe; Birgit Niemann; Steffen M. Weidner; Andreas F. Thünemann; Alfonso Lampen

Abstract Orally ingested nanoparticles may overcome the gastrointestinal barrier, reach the circulatory system, be distributed in the organism and cause adverse health effects. However, ingested nanoparticles have to pass through different physicochemical environments, which may alter their properties before they reach the intestinal cells. In this study, silver nanoparticles are characterised physicochemically during the course of artificial digestion to simulate the biochemical processes occurring during digestion. Their cytotoxicity on intestinal cells was investigated using the Caco-2 cell model. Using field-flow fractionation combined with dynamic light scattering and small-angle X-ray scattering, the authors found that particles only partially aggregate as a result of the digestive process. Cell viabilities were determined by means of CellTiter-Blue® assay, 4′,6-diamidino-2-phenylindole-staining and real-time impedance. These measurements reveal small differences between digested and undigested particles (1–100 µg/ml or 1–69 particles/cell). The findings suggest that silver nanoparticles may indeed overcome the gastrointestinal juices in their particulate form without forming large quantities of aggregates. Consequently, the authors presume that the particles can reach the intestinal epithelial cells after ingestion with only a slight reduction in their cytotoxic potential. The study indicates that it is important to determine the impact of body fluids on the nanoparticles of interest to provide a reliable interpretation of their nano-specific cytotoxicity testing in vivo and in vitro.


Biological Chemistry | 2015

Impact of food components during in vitro digestion of silver nanoparticles on cellular uptake and cytotoxicity in intestinal cells

Dajana Lichtenstein; Johanna Ebmeyer; Patrick Knappe; Sabine Juling; Linda Böhmert; Sören Selve; Birgit Niemann; Albert Braeuning; Andreas F. Thünemann; Alfonso Lampen

Abstract Because of the rising application of nanoparticles in food and food-related products, we investigated the influence of the digestion process on the toxicity and cellular uptake of silver nanoparticles for intestinal cells. The main food components – carbohydrates, proteins and fatty acids – were implemented in an in vitro digestion process to simulate realistic conditions. Digested and undigested silver nanoparticle suspensions were used for uptake studies in the well-established Caco-2 model. Small-angle X-ray scattering was used to estimate particle core size, size distribution and stability in cell culture medium. Particles proved to be stable and showed radii from 3.6 to 16.0 nm. Undigested particles and particles digested in the presence of food components were comparably taken up by Caco-2 cells, whereas the uptake of particles digested without food components was decreased by 60%. Overall, these findings suggest that in vivo ingested poly (acrylic acid)-coated silver nanoparticles may reach the intestine in a nanoscaled form even if enclosed in a food matrix. While appropriate for studies on the uptake into intestinal cells, the Caco-2 model might be less suited for translocation studies. Moreover, we show that nanoparticle digestion protocols lacking food components may lead to misinterpretation of uptake studies and inconclusive results.


Nanotoxicology | 2015

Molecular mechanism of silver nanoparticles in human intestinal cells

Linda Böhmert; Birgit Niemann; Dajana Lichtenstein; Sabine Juling; Alfonso Lampen

Abstract Silver nanoparticles are used in consumer products like food contact materials, drinking water technologies and supplements, due to their antimicrobial properties. This leads to an oral uptake and exposure of intestinal cells. In contrast to other studies we found no apoptosis induction by surfactant-coated silver nanoparticles in the intestinal cell model Caco-2 in a previous study, although the particles induced oxidative stress, morphological changes and cell death. Therefore, this study aimed to analyze the molecular mechanism of silver nanoparticles in Caco-2 cells. We used global gene expression profiling in differentiated Caco-2 cells, supported by verification of the microarray data by quantitative real-time RT-PCR and microscopic analysis, impedance measurements and assays for apoptosis and oxidative stress. Our results revealed that surfactant-coated silver nanoparticles probably affect the cells by outside-in signaling. They induce oxidative stress and have an influence on canonical pathways related to FAK, ILK, ERK, MAPK, integrins and adherence and tight junctions, thereby inducing transcription factors like AP1, NFkB and NRF2, which mediate cellular reactions in response to oxidative stress and metal ions and induce changes in the cytoskeleton and cell–cell and cell–matrix contacts. The present data confirm the absence of apoptotic cell death. Non-apoptotic, necrotic cell death, especially in the intestine, can cause inflammation and influence the mucosal immune response.


Journal of Applied Toxicology | 2016

Proteomic responses of human intestinal Caco-2 cells exposed to silver nanoparticles and ionic silver

Axel Oberemm; Ulf Hansen; Linda Böhmert; Christine Meckert; Albert Braeuning; Andreas F. Thünemann; Alfonso Lampen

Even although quite a number of studies have been performed so far to demonstrate nanoparticle‐specific effects of substances in living systems, clear evidence of these effects is still under debate. The present study was designed as a comparative proteomic analysis of human intestinal cells exposed to a commercial silver nanoparticle reference material and ions from AgNO3. A two‐dimensional gel electrophoresis/MALDI mass spectrometry (MS)‐based proteomic analysis was conducted after 24‐h incubation of differentiated Caco‐2 cells with non‐cytotoxic and low cytotoxic silver concentrations (2.5 and 25 µg ml−1 nanosilver, 0.5 and 5 µg ml−1 AgNO3). Out of an overall number of 316 protein spots differentially expressed at a fold change of ≥ 1.4 or ≤ −1.4 in all treatments, 169 proteins could be identified. In total, 231 spots were specifically deregulated in particle‐treated groups compared with 41 spots, which were limited to AgNO3‐treatments. Forty‐four spots (14 %) were commonly deregulated by both types of treatment. A considerable fraction of the proteins differentially expressed after treatment with nanoparticles is related to protein folding, synthesis or modification of proteins as well as cellular assembly and organization. Overlays of networks obtained for particulate and ionic treatments showed matches, indicating common mechanisms of combined particle and ionic silver exposure and exclusive ionic silver treatment. However, proteomic responses of Caco‐2 cells treated with higher concentrations of silver species also showed some differences, for example regarding proteins related to fatty acid and energy metabolism, suggesting an induction of also some different molecular mechanisms for particle exposure and ionic treatment. Copyright


European Journal of Pharmaceutics and Biopharmaceutics | 2017

It takes more than a coating to get nanoparticles through the intestinal barrier in vitro

Dajana Lichtenstein; Johanna Ebmeyer; Thomas Meyer; Anne-Cathrin Behr; Claudia Kästner; Linda Böhmert; Sabine Juling; Birgit Niemann; Christoph Fahrenson; Sören Selve; Andreas F. Thünemann; Jan Meijer; Irina Estrela-Lopis; Albert Braeuning; Alfonso Lampen

Graphical abstract Figure. No caption available. ABSTRACT Size and shape are crucial parameters which have impact on the potential of nanoparticles to penetrate cell membranes and epithelial barriers. Current research in nanotoxicology additionally focuses on particle coating. To distinguish between core‐ and coating‐related effects in nanoparticle uptake and translocation, two nanoparticles equal in size, coating and charge but different in core material were investigated. Silver and iron oxide nanoparticles coated with poly (acrylic acid) were chosen and extensively characterized by small‐angle x‐ray scattering, nanoparticle tracing analysis and transmission electron microscopy (TEM). Uptake and transport were studied in the intestinal Caco‐2 model in a Transwell system with subsequent elemental analysis. TEM and ion beam microscopy were conducted for particle visualization. Although equal in size, charge and coating, the behavior of the two particles in Caco‐2 cells was different: while the internalized amount was comparable, only iron oxide nanoparticles additionally passed the epithelium. Our findings suggest that the coating material influenced only the uptake of the nanoparticles whereas the translocation was determined by the core material. Knowledge about the different roles of the particle coating and core materials in crossing biological barriers will facilitate toxicological risk assessment of nanoparticles and contribute to the optimization of pharmacokinetic properties of nano‐scaled pharmaceuticals.


Langmuir | 2017

Impact of an Artificial Digestion Procedure on Aluminum-Containing Nanomaterials

H. Sieg; Claudia Kästner; Benjamin Krause; Thomas J. Meyer; Agnès Burel; Linda Böhmert; Dajana Lichtenstein; Harald Jungnickel; Jutta Tentschert; Peter Laux; Albert Braeuning; Irina Estrela-Lopis; Fabienne Gauffre; Valérie Fessard; Jan Meijer; Andreas Luch; Andreas F. Thünemann; Alfonso Lampen

Aluminum has gathered toxicological attention based on relevant human exposure and its suspected hazardous potential. Nanoparticles from food supplements or food contact materials may reach the human gastrointestinal tract. Here, we monitored the physicochemical fate of aluminum-containing nanoparticles and aluminum ions when passaging an in vitro model of the human gastrointestinal tract. Small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), ion beam microscopy (IBM), secondary ion beam mass spectrometry (TOF-SIMS), and inductively coupled plasma mass spectrometry (ICP-MS) in the single-particle mode were employed to characterize two aluminum-containing nanomaterials with different particle core materials (Al0, γAl2O3) and soluble AlCl3. Particle size and shape remained unchanged in saliva, whereas strong agglomeration of both aluminum nanoparticle species was observed at low pH in gastric fluid together with an increased ion release. The levels of free aluminum ions decreased in intestinal fluid and the particles deagglomerated, thus liberating primary particles again. Dissolution of nanoparticles was limited and substantial changes of their shape and size were not detected. The amounts of particle-associated phosphorus, chlorine, potassium, and calcium increased in intestinal fluid, as compared to nanoparticles in standard dispersion. Interestingly, nanoparticles were found in the intestinal fluid after addition of ionic aluminum. We provide a comprehensive characterization of the fate of aluminum nanoparticles in simulated gastrointestinal fluids, demonstrating that orally ingested nanoparticles probably reach the intestinal epithelium. The balance between dissolution and de novo complex formation should be considered when evaluating nanotoxicological experiments.


Journal of Proteome Research | 2017

Protein Corona Analysis of Silver Nanoparticles Links to Their Cellular Effects

Sabine Juling; Alicia Niedzwiecka; Linda Böhmert; Dajana Lichtenstein; Soeren Selve; Albert Braeuning; Andreas F. Thünemann; Eberhard Krause; Alfonso Lampen

The breadth of applications of nanoparticles and the access to food-associated consumer products containing nanosized materials lead to oral human exposure to such particles. In biological fluids nanoparticles dynamically interact with biomolecules and form a protein corona. Knowledge about the protein corona is of great interest for understanding the molecular effects of particles as well as their fate inside the human body. We used a mass spectrometry-based toxicoproteomics approach to elucidate mechanisms of toxicity of silver nanoparticles and to comprehensively characterize the protein corona formed around silver nanoparticles in Caco-2 human intestinal epithelial cells. Results were compared with respect to the cellular function of proteins either affected by exposure to nanoparticles or present in the protein corona. A transcriptomic data set was included in the analyses in order to obtain a combined multiomics view of nanoparticle-affected cellular processes. A relationship between corona proteins and the proteomic or transcriptomic responses was revealed, showing that differentially regulated proteins or transcripts were engaged in the same cellular signaling pathways. Protein corona analyses of nanoparticles in cells might therefore help in obtaining information about the molecular consequences of nanoparticle treatment.


RSC Advances | 2018

Characterization of aluminum, aluminum oxide and titanium dioxide nanomaterials using a combination of methods for particle surface and size analysis

Benjamin-Christoph Krause; Thomas Meyer; H. Sieg; Claudia Kästner; P. Reichardt; Jutta Tentschert; Harald Jungnickel; Irina Estrela-Lopis; Agnès Burel; S. Chevance; Fabienne Gauffre; Pégah Jalili; Jan Meijer; Linda Böhmert; Albert Braeuning; Andreas F. Thünemann; Franziska Emmerling; Valérie Fessard; Peter Laux; Alfonso Lampen; Andreas Luch

The application of appropriate analytical techniques is essential for nanomaterial (NM) characterization. In this study, we compared different analytical techniques for NM analysis. Regarding possible adverse health effects, ionic and particulate NM effects have to be taken into account. As NMs behave quite differently in physiological media, special attention was paid to techniques which are able to determine the biosolubility and complexation behavior of NMs. Representative NMs of similar size were selected: aluminum (Al0) and aluminum oxide (Al2O3), to compare the behavior of metal and metal oxides. In addition, titanium dioxide (TiO2) was investigated. Characterization techniques such as dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA) were evaluated with respect to their suitability for fast characterization of nanoparticle dispersions regarding a particles hydrodynamic diameter and size distribution. By application of inductively coupled plasma mass spectrometry in the single particle mode (SP-ICP-MS), individual nanoparticles were quantified and characterized regarding their size. SP-ICP-MS measurements were correlated with the information gained using other characterization techniques, i.e. transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). The particle surface as an important descriptor of NMs was analyzed by X-ray diffraction (XRD). NM impurities and their co-localization with biomolecules were determined by ion beam microscopy (IBM) and confocal Raman microscopy (CRM). We conclude advantages and disadvantages of the different techniques applied and suggest options for their complementation. Thus, this paper may serve as a practical guide to particle characterization techniques.


Food and Chemical Toxicology | 2018

Comparative proteomic analysis of hepatic effects induced by nanosilver, silver ions and nanoparticle coating in rats

Sabine Juling; Linda Böhmert; Dajana Lichtenstein; Axel Oberemm; Otto Creutzenberg; Andreas F. Thünemann; Albert Braeuning; Alfonso Lampen

The presence of nano-scaled particles in food and food-related products has drawn attention to the oral uptake of nanoparticles and their interactions with biological systems. In the present study, we used a toxicoproteomics approach to allow for the untargeted experimental identification and comparative analysis of cellular responses in rat liver after repeated-dose treatment with silver nanoparticles, ions, and the coating matrix used for particle stabilization. The proteomic analysis revealed treatment-related effects caused by exposure to silver in particulate and ionic form. Both silver species induced similar patterns of signaling and metabolic alterations. Silver-induced cellular alterations comprised, amongst others, proteins involved in metal homeostasis, oxidative stress response, and energy metabolism. However, we discovered that secondary nano-scaled structures were formed from ionic silver. Furthermore, also the coating matrix alone gave rise to the formation of nano-scaled particles. The present data confirm, complement, and extend previous knowledge on silver toxicity in rodent liver by providing a comprehensive proteomic data set. The observation of secondary particle formation from non-particle controls underlines the difficulties in separating particle-, ion-, and matrix coating-related effects in biological systems. Awareness of this issue will support proper evaluation of nanotoxicology-related data in the future.


Drug Metabolism and Disposition | 2018

Regulation of drug metabolism by the interplay of inflammatory signaling, steatosis, and xeno-sensing receptors in HepaRG cells

Norman Tanner; Lisa Kubik; Claudia Luckert; Maria Thomas; Ute Hofmann; Ulrich M. Zanger; Linda Böhmert; Alfonso Lampen; Albert Braeuning

Nonalcoholic fatty liver disease (NAFLD), which is characterized by triglyceride deposition in hepatocytes resulting from imbalanced lipid homeostasis, is of increasing concern in Western countries, along with progression to nonalcoholic steatohepatitis (NASH), liver fibrosis, and cirrhosis. Previous studies suggest a complex, mutual influence of hepatic fat accumulation, NASH-related inflammatory mediators, and drug-sensing receptors regulating xenobiotic metabolism. Here, we investigated the suitability of human HepaRG hepatocarcinoma cells as a model for NAFLD and NASH. Cells were incubated for up to 14 days with an oleate/palmitate mixture (125 µM each) and/or with 10 ng/ml of the inflammatory mediator interleukin-6 (IL-6). Effects of these conditions on the regulation of drug metabolism were studied using xenobiotic agonists of the aryl hydrocarbon receptor (AHR), pregnane X receptor (PXR), constitutive androstane receptor (CAR), nuclear factor (erythroid-derived 2)-like 2, and peroxisome proliferator-activated receptor α (PPARα). Results underpin the suitability of HepaRG cells for NAFLD- and NASH-related research and constitute a broad-based analysis of the impact of hepatic fatty acid accumulation and inflammation on drug metabolism and its inducibility by xenobiotics. IL-6 exerted pronounced negative regulatory effects on basal as well as on PXR-, CAR-, and PPARα-, but not AHR-dependent induction of drug-metabolizing enzymes. This inhibition was related to diminished transactivation potential of the respective receptors rather than to reduced transcription of nuclear receptor-encoding mRNAs. The most striking effects of IL-6 and/or fatty acid treatment were observed in HepaRG cells after 14 days of treatment, making these cultures appear a suitable model for studying the relationship of fatty acid accumulation, inflammation, and xenobiotic-induced drug metabolism.

Collaboration


Dive into the Linda Böhmert's collaboration.

Top Co-Authors

Avatar

Alfonso Lampen

Federal Institute for Risk Assessment

View shared research outputs
Top Co-Authors

Avatar

Albert Braeuning

Federal Institute for Risk Assessment

View shared research outputs
Top Co-Authors

Avatar

Dajana Lichtenstein

Federal Institute for Risk Assessment

View shared research outputs
Top Co-Authors

Avatar

Andreas F. Thünemann

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Top Co-Authors

Avatar

Sabine Juling

Federal Institute for Risk Assessment

View shared research outputs
Top Co-Authors

Avatar

H. Sieg

Federal Institute for Risk Assessment

View shared research outputs
Top Co-Authors

Avatar

Andreas Luch

Federal Institute for Risk Assessment

View shared research outputs
Top Co-Authors

Avatar

Peter Laux

Federal Institute for Risk Assessment

View shared research outputs
Top Co-Authors

Avatar

Birgit Niemann

Federal Institute for Risk Assessment

View shared research outputs
Top Co-Authors

Avatar

Sören Selve

Technical University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge