Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Laux is active.

Publication


Featured researches published by Peter Laux.


The Lancet | 2016

A medical-toxicological view of tattooing

Peter Laux; Tewes Tralau; Jutta Tentschert; Annegret Blume; Sascha Al Dahouk; Wolfgang Bäumler; Eric Bernstein; Beatrice Bocca; Alessandro Alimonti; Helen Colebrook; Christa de Cuyper; Lars Dähne; Urs Hauri; Paul C. Howard; Paul Janssen; Linda M. Katz; Bruce Klitzman; Nicolas Kluger; Lars Krutak; Thomas Platzek; Victoria Scott-Lang; Jørgen Serup; Wera Teubner; Ines Schreiver; Elena Wilkniß; Andreas Luch

Long perceived as a form of exotic self-expression in some social fringe groups, tattoos have left their maverick image behind and become mainstream, particularly for young people. Historically, tattoo-related health and safety regulations have focused on rules of hygiene and prevention of infections. Meanwhile, the increasing popularity of tattooing has led to the development of many new colours, allowing tattoos to be more spectacular than ever before. However, little is known about the toxicological risks of the ingredients used. For risk assessment, safe intradermal application of these pigments needs data for toxicity and biokinetics and increased knowledge about the removal of tattoos. Other concerns are the potential for phototoxicity, substance migration, and the possible metabolic conversion of tattoo ink ingredients into toxic substances. Similar considerations apply to cleavage products that are formed during laser-assisted tattoo removal. In this Review, we summarise the issues of concern, putting them into context, and provide perspectives for the assessment of the acute and chronic health effects associated with tattooing.


Science of The Total Environment | 2015

Freshwater dispersion stability of PAA-stabilised cerium oxide nanoparticles and toxicity towards Pseudokirchneriella subcapitata

Andy M. Booth; Trond Røvik Størseth; Dag Altin; Anwar Ahniyaz; Harald Jungnickel; Peter Laux; Andreas Luch; Lisbet Sørensen

An aqueous dispersion of poly (acrylic acid)-stabilised cerium oxide (CeO₂) nanoparticles (PAA-CeO₂) was evaluated for its stability in a range of freshwater ecotoxicity media (MHRW, TG 201 and M7), with and without natural organic matter (NOM). In a 15 day dispersion stability study, PAA-CeO₂ did not undergo significant aggregation in any media type. Zeta potential varied between media types and was influenced by PAA-CeO₂ concentration, but remained constant over 15 days. NOM had no influence on PAA-CeO₂ aggregation or zeta potential. The ecotoxicity of the PAA-CeO₂ dispersion was investigated in 72 h algal growth inhibition tests using the freshwater microalgae Pseudokirchneriella subcapitata. PAA-CeO₂ EC₅₀ values for growth inhibition (GI; 0.024 mg/L) were 2-3 orders of magnitude lower than pristine CeO₂ EC₅₀ values reported in the literature. The concentration of dissolved cerium (Ce(3+)/Ce(4+)) in PAA-CeO₂ exposure suspensions was very low, ranging between 0.5 and 5.6 μg/L. Free PAA concentration in the exposure solutions (0.0096-0.0384 mg/L) was significantly lower than the EC10 growth inhibition (47.7 mg/L) value of pure PAA, indicating that free PAA did not contribute to the observed toxicity. Elemental analysis indicated that up to 38% of the total Cerium becomes directly associated with the algal cells during the 72 h exposure. TOF-SIMS analysis of algal cell wall compounds indicated three different modes of action, including a significant oxidative stress response to PAA-CeO₂ exposure. In contrast to pristine CeO₂ nanoparticles, which rapidly aggregate in standard ecotoxicity media, PAA-stabilised CeO₂ nanoparticles remain dispersed and available to water column species. Interaction of PAA with cell wall components, which could be responsible for the observed biomarker alterations, could not be excluded. This study indicates that the increased dispersion stability of PAA-CeO₂ leads to an increase in toxicity compared to pristine non-stabilised forms.


Environmental Science & Technology | 2016

Textile Functionalization and Its Effects on the Release of Silver Nanoparticles into Artificial Sweat.

Sandra Wagener; Nils Dommershausen; Harald Jungnickel; Peter Laux; Denise M. Mitrano; Bernd Nowack; Gregor Schneider; Andreas Luch

This study addresses the release of total silver (Ag) and silver nanoparticles (Ag-NPs) from textiles into artificial sweat, particularly considering the functionalization technology used in textile finishing. Migration experiments were conducted for four commercially available textiles and for six laboratory-prepared textiles. Two among these lab-prepared textiles represent materials in which Ag-NPs were embedded within the textile fibers (composites), whereas the other lab-prepared textiles contain Ag particles on the respective fiber surfaces (coatings). The results indicate a smaller release of total Ag from composites in comparison to surface-coated textiles. The particulate fraction determined within the artificial sweat was negligible for most textiles, meaning that the majority of the released Ag is present as dissolved Ag. It is also relevant to note that nanotextiles do not release more particulate Ag than conventional Ag textiles. The results rather indicate that the functionalization type is the most important parameter affecting the migration. Furthermore, after measuring different Ag-NP types in their pristine form with inductively coupled plasma mass spectrometry in the single particle mode, there is evidence that particle modifications, like surface coating, may also influence the dissolution behavior of the Ag-NPs in the sweat solutions. These factors are important when discussing the likelihood of consumer exposure.


Scientific Reports | 2015

Formation of highly toxic hydrogen cyanide upon ruby laser irradiation of the tattoo pigment phthalocyanine blue

Ines Schreiver; Christoph Hutzler; Peter Laux; Hans-Peter Berlien; Andreas Luch

Since laser treatment of tattoos is the favored method for the removing of no longer wanted permanent skin paintings, analytical, biokinetics and toxicological data on the fragmentation pattern of commonly used pigments are urgently required for health safety reasons. Applying dynamic headspace—gas chromatography with mass spectrometric detection (DHS—GC/MS) and comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GCxGC—ToF-MS), we identified 1,2-benzene dicarbonitrile, benzonitrile, benzene, and the poisonous gas hydrogen cyanide (HCN) as main fragmentation products emerging dose-dependently upon ruby laser irradiation of the popular blue pigment copper phthalocyanine in suspension. Skin cell viability was found to be significantly compromised at cyanide levels of ≥1 mM liberated during ruby laser irradiation of >1.5 mg/ml phthalocyanine blue. Further, for the first time we introduce pyrolysis-GC/MS as method suitable to simulate pigment fragmentation that may occur spontaneously or during laser removal of organic pigments in the living skin of tattooed people. According to the literature such regular tattoos hold up to 9 mg pigment/cm2 skin.


Scientific Reports | 2017

Synchrotron-based ν-XRF mapping and μ-FTIR microscopy enable to look into the fate and effects of tattoo pigments in human skin

Ines Schreiver; Bernhard Hesse; Christian Seim; Hiram Castillo-Michel; Julie Villanova; Peter Laux; Nadine Dreiack; Randolf Penning; Rémi Tucoulou; Marine Cotte; Andreas Luch

The increasing prevalence of tattoos provoked safety concerns with respect to particle distribution and effects inside the human body. We used skin and lymphatic tissues from human corpses to address local biokinetics by means of synchrotron X-ray fluorescence (XRF) techniques at both the micro (μ) and nano (ν) scale. Additional advanced mass spectrometry-based methodology enabled to demonstrate simultaneous transport of organic pigments, heavy metals and titanium dioxide from skin to regional lymph nodes. Among these compounds, organic pigments displayed the broadest size range with smallest species preferentially reaching the lymph nodes. Using synchrotron μ-FTIR analysis we were also able to detect ultrastructural changes of the tissue adjacent to tattoo particles through altered amide I α-helix to β-sheet protein ratios and elevated lipid contents. Altogether we report strong evidence for both migration and long-term deposition of toxic elements and tattoo pigments as well as for conformational alterations of biomolecules that likely contribute to cutaneous inflammation and other adversities upon tattooing.


NanoImpact | 2017

Biokinetics of nanomaterials: The role of biopersistence

Peter Laux; Christian Riebeling; Andy M. Booth; Joseph D. Brain; Josephine Brunner; Cristina Cerrillo; Otto Creutzenberg; Irina Estrela-Lopis; Thomas Gebel; Gunnar Johanson; Harald Jungnickel; Heiko Kock; Jutta Tentschert; Ahmed Tlili; Andreas Schäffer; Adriënne J.A.M. Sips; Robert A. Yokel; Andreas Luch

Nanotechnology risk management strategies and environmental regulations continue to rely on hazard and exposure assessment protocols developed for bulk materials, including larger size particles, while commercial application of nanomaterials (NMs) increases. In order to support and corroborate risk assessment of NMs for workers, consumers, and the environment it is crucial to establish the impact of biopersistence of NMs at realistic doses. In the future, such data will allow a more refined future categorization of NMs. Despite many experiments on NM characterization and numerous in vitro and in vivo studies, several questions remain unanswered including the influence of biopersistence on the toxicity of NMs. It is unclear which criteria to apply to characterize a NM as biopersistent. Detection and quantification of NMs, especially determination of their state, i.e., dissolution, aggregation, and agglomeration within biological matrices and other environments are still challenging tasks; moreover mechanisms of nanoparticle (NP) translocation and persistence remain critical gaps. This review summarizes the current understanding of NM biokinetics focusing on determinants of biopersistence. Thorough particle characterization in different exposure scenarios and biological matrices requires use of suitable analytical methods and is a prerequisite to understand biopersistence and for the development of appropriate dosimetry. Analytical tools that potentially can facilitate elucidation of key NM characteristics, such as ion beam microscopy (IBM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), are discussed in relation to their potential to advance the understanding of biopersistent NM kinetics. We conclude that a major requirement for future nanosafety research is the development and application of analytical tools to characterize NPs in different exposure scenarios and biological matrices.


Archives of Toxicology | 2016

Identification and hazard prediction of tattoo pigments by means of pyrolysis-gas chromatography/mass spectrometry.

Ines Schreiver; Christoph Hutzler; Sarah Andree; Peter Laux; Andreas Luch

The implementation of regulation for tattoo ink ingredients across Europe has generated the need for analytical methods suitable to identify prohibited compounds. Common challenges of this subject are the poor solubility and the lack of volatility for most pigments and polymers applied in tattoo inks. Here, we present pyrolysis coupled to online gas chromatography and electron impact ionization mass spectrometry (py-GC/MS) as quick and reliable tool for pigment identification using both purified pigments and tattoo ink formulations. Some 36 organic pigments frequently used in tattoo inks were subjected to py-GC/MS with the aim to establish a pyrogram library. To cross-validate pigment identification, 28 commercially available tattoo inks as well as 18 self-made pigment mixtures were analyzed. Pyrograms of inks and mixtures were evaluated by two different means to work out the most reliable and fastest strategy for an otherwise rather time-consuming data review. Using this approach, the declaration of tattoo pigments currently used on the market could be verified. The pyrolysis library presented here is also assumed suitable to predict decomposition patterns of pigments when affected by other degradation scenarios, such as sunlight exposure or laser irradiation. Thus, the consumers’ risk associated with the exposure to toxicologically relevant substances that originate from pigment decomposition in the dermal layers of the skin can be assessed. Differentiation between more or less harmful pigments for this field of application now will become feasible.


Toxics | 2016

Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS): A New Tool for the Analysis of Toxicological Effects on Single Cell Level

Harald Jungnickel; Peter Laux; Andreas Luch

Single cell imaging mass spectrometry opens up a complete new perspective for strategies in toxicological risk assessment and drug discovery. In particular, time-of-flight secondary ion mass spectrometry (ToF-SIMS) with its high spatial and depth resolution is becoming part of the imaging mass spectrometry toolbox used for single cell analysis. Recent instrumentation advancements in combination with newly developed cluster ion guns allow 3-dimensional reconstruction of single cells together with a spatially resolved compound location and quantification on nanoscale depth level. The exact location and quantification of a single compound or even of a set of compounds is no longer restricted to the two dimensional space within single cells, but is available for voxels, a cube-sized 3-dimensional space, rather than pixels. The information gathered from one voxel is further analysed using multivariate statistical methodology like maximum autocorrelation factors to co-locate the compounds of interest within intracellular organelles like nucleus, mitochondria or golgi apparatus. Furthermore, the cell membrane may be resolved, including adhering compounds and potential changes of the lipid patterns. The generated information can be used further for a first evaluation of intracellular target specifity of new drug candidates or for the toxicological risk assessment of environmental chemicals and their intracellular metabolites. Additionally, single cell lipidomics and metabolomics enable for the first time an in-depth understanding of the activation or inhibition of cellular biosynthesis and signalling pathways.


Science of The Total Environment | 2016

Time-of-flight secondary ion mass spectrometry (ToF-SIMS)-based analysis and imaging of polyethylene microplastics formation during sea surf simulation.

Harald Jungnickel; R. Pund; Jutta Tentschert; Philipp Reichardt; Peter Laux; H. Harbach; Andreas Luch

Plastic particles smaller than 5mm, so called microplastics have the capability to accumulate in rivers, lakes and the marine environment and therefore have begun to be considered in eco-toxicology and human health risk assessment. Environmental microplastic contaminants may originate from consumer products like body wash, tooth pastes and cosmetic products, but also from degradation of plastic waste; they represent a potential but unpredictable threat to aquatic organisms and possibly also to humans. We investigated exemplarily for polyethylene (PE), the most abundant constituent of microplastic particles in the environment, whether such fragments could be produced from larger pellets (2mm×6mm). So far only few analytical methods exist to identify microplastic particles smaller than 10μm, especially no imaging mass spectrometry technique. We used at first time-of-flight secondary ion mass spectrometry (ToF-SIMS) for analysis and imaging of small PE-microplastic particles directly in the model system Ottawa sand during exposure to sea surf simulation. As a prerequisite, a method for identification of PE was established by identification of characteristic ions for PE out of an analysis of grinded polymer samples. The method was applied onto Ottawa sand in order to investigate the influence of simulated environmental conditions on particle transformation. A severe degradation of the primary PE pellet surface, associated with the transformation of larger particles into smaller ones already after 14days of sea surf simulation, was observed. Within the subsequent period of 14days to 1month of exposure the number of detected smallest-sized particles increased significantly (50%) while the second smallest fraction increased even further to 350%. Results were verified using artificially degraded PE pellets and Ottawa sand.


Contact Dermatitis | 2017

Are metals involved in tattoo-related hypersensitivity reactions? A case report

Christa de Cuyper; Evelyne Lodewick; Ines Schreiver; Bernhard Hesse; Christian Seim; Hiram Castillo-Michel; Peter Laux; Andreas Luch

Allergic reactions to tattoos are not uncommon. However, identification of the culprit allergen(s) remains challenging.

Collaboration


Dive into the Peter Laux's collaboration.

Top Co-Authors

Avatar

Andreas Luch

Federal Institute for Risk Assessment

View shared research outputs
Top Co-Authors

Avatar

Harald Jungnickel

Federal Institute for Risk Assessment

View shared research outputs
Top Co-Authors

Avatar

Jutta Tentschert

Federal Institute for Risk Assessment

View shared research outputs
Top Co-Authors

Avatar

Alfonso Lampen

Federal Institute for Risk Assessment

View shared research outputs
Top Co-Authors

Avatar

Ines Schreiver

Federal Institute for Risk Assessment

View shared research outputs
Top Co-Authors

Avatar

Linda Böhmert

Federal Institute for Risk Assessment

View shared research outputs
Top Co-Authors

Avatar

Albert Braeuning

Federal Institute for Risk Assessment

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Sieg

Federal Institute for Risk Assessment

View shared research outputs
Researchain Logo
Decentralizing Knowledge