Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linda L. Jahnke is active.

Publication


Featured researches published by Linda L. Jahnke.


Nature | 1999

2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis

Roger E. Summons; Linda L. Jahnke; Janet M. Hope; Graham A. Logan

Oxygenic photosynthesis is widely accepted as the most important bioenergetic process happening in Earths surface environment. It is thought to have evolved within the cyanobacterial lineage, but it has been difficult to determine when it began. Evidence based on the occurrence and appearance of stromatolites and microfossils indicates that phototrophy occurred as long ago as 3,465 Myr although no definite physiological inferences can be made from these objects. Carbon isotopes and other geological phenomena, provide clues but are also equivocal. Biomarkers are potentially useful because the three domains of extant life—Bacteria, Archaea and Eukarya—have signature membrane lipids with recalcitrant carbon skeletons. These lipids turn into hydrocarbons in sediments and can be found wherever the recordis sufficiently well preserved. Here we show that 2-methylbacteriohopanepolyols occur in a high proportion of cultured cyanobacteria and cyanobacterial mats. Their 2-methylhopane hydrocarbon derivatives are abundant in organic-rich sediments as old as 2,500 Myr. These biomarkers may help constrain the age of the oldest cyanobacteria and the advent of oxygenic photosynthesis. They could also be used to quantify the ecological importance of cyanobacteria through geological time.


Geochimica et Cosmochimica Acta | 1994

Carbon isotopic fractionation in lipids from methanotrophic bacteria: relevance for interpretation of the geochemical record of biomarkers

Roger E. Summons; Linda L. Jahnke; Zarko Roksandic

Experiments with cultured aerobic methane oxidising bacteria confirm that their biomarker lipids will be significantly depleted in 13C compared to the substrate. The methanotrophic bacteria Methylococcus capsulatus and Methylomonas methanica, grown on methane and using the RuMP cycle for carbon assimilation, show maximum 13C fractionation of approximately 30% in the resultant biomass. In M. capsulatus, the maximum fractionation is observed in the earliest part of the exponential growth stage and decreases to approximately 16% as cells approach stationary phase. This change may be associated with a shift from the particulate form to the soluble form of the methane monooxygenase enzyme. Less than maximum fractionation is observed when cells are grown with reduced methane availability. Biomass of M. capsulatus grown on methanol was depleted by 9% compared to the substrate. Additional strong 13C fractionation takes place during polyisoprenoid biosynthesis in methanotrophs. The delta 13C values of individual hopanoid and steroid biomarkers produced by these organisms were as much as l0% more negative than total biomass. In individual cultures, squalene was 13C-enriched by as much as 14% compared to the triterpane skeleton of bacteriohopaneaminopentol. Much of the isotopic dispersion in lipid metabolites could be attributed to shifts in their relative abundances, combined with an overall reduction in fractionation during the growth cycle. In cells grown on methanol, where there was no apparent effect of growth stage on overall fractionation there were still significant isotopic differences between closely related lipids including a 5.3% difference between the hopane and 3 beta-methylhopane skeletons. Hopane and sterane polyisoprenoids were also 13C-depleted compared to fatty acids. These observations have significant implications for the interpretation of specific compound isotopic signatures now being measured for hydrocarbons and other lipids present in sediments and petroleum. In particular, biomarker lipids produced by a single organism do not necessarily have the same carbon isotopic composition.


Philosophical Transactions of the Royal Society B | 2006

Steroids, triterpenoids and molecular oxygen.

Roger E. Summons; Alexander S. Bradley; Linda L. Jahnke; Jacob R. Waldbauer

There is a close connection between modern-day biosynthesis of particular triterpenoid biomarkers and presence of molecular oxygen in the environment. Thus, the detection of steroid and triterpenoid hydrocarbons far back in Earth history has been used to infer the antiquity of oxygenic photosynthesis. This prompts the question: were these compounds produced similarly in the past? In this paper, we address this question with a review of the current state of knowledge surrounding the oxygen requirement for steroid biosynthesis and phylogenetic patterns in the distribution of steroid and triterpenoid biosynthetic pathways. The hopanoid and steroid biosynthetic pathways are very highly conserved within the bacterial and eukaryotic domains, respectively. Bacteriohopanepolyols are produced by a wide range of bacteria, and are methylated in significant abundance at the C2 position by oxygen-producing cyanobacteria. On the other hand, sterol biosynthesis is sparsely distributed in distantly related bacterial taxa and the pathways do not produce the wide range of products that characterize eukaryotes. In particular, evidence for sterol biosynthesis by cyanobacteria appears flawed. Our experiments show that cyanobacterial cultures are easily contaminated by sterol-producing rust fungi, which can be eliminated by treatment with cycloheximide affording sterol-free samples. Sterols are ubiquitous features of eukaryotic membranes, and it appears likely that the initial steps in sterol biosynthesis were present in their modern form in the last common ancestor of eukaryotes. Eleven molecules of O2 are required by four enzymes to produce one molecule of cholesterol. Thermodynamic arguments, optimization of function and parsimony all indicate that an ancestral anaerobic pathway is highly unlikely. The known geological record of molecular fossils, especially steranes and triterpanes, is notable for the limited number of structural motifs that have been observed. With a few exceptions, the carbon skeletons are the same as those found in the lipids of extant organisms and no demonstrably extinct structures have been reported. Furthermore, their patterns of occurrence over billion year time-scales correlate strongly with environments of deposition. Accordingly, biomarkers are excellent indicators of environmental conditions even though the taxonomic affinities of all biomarkers cannot be precisely specified. Biomarkers are ultimately tied to biochemicals with very specific functional properties, and interpretations of the biomarker record will benefit from increased understanding of the biological roles of geologically durable molecules.


Geochimica et Cosmochimica Acta | 1999

Carbon isotopic fractionation in lipids from methanotrophic bacteria II: the effects of physiology and environmental parameters on the biosynthesis and isotopic signatures of biomarkers.

Linda L. Jahnke; Roger E. Summons; Janet M. Hope; David J. Des Marais

Controls on the carbon isotopic signatures of methanotroph biomarkers have been further explored using cultured organisms. Growth under conditions which select for the membrane-bound particulate form of the methane monooxygenase enzyme (pMMO) leads to a significantly higher isotopic fractionation than does growth based on the soluble isozyme in both RuMP and serine pathway methanotrophs; in an RuMP type the delta delta 13Cbiomass equaled -23.9% for pMMO and -12.6% for sMMO. The distribution of biomarker lipids does not appear to be significantly affected by the dominance of one or the other MMO type and their isotopic compositions generally track those of the parent biomass. The 13C fractionation behaviour of serine pathway methanotrophs is very complex, reflecting the assimilation of both methane and carbon dioxide and concomitant dissimilation of methane-derived carbon. A limitation in CH4 availability leads to the production of biomass which is 13C-enriched with respect to both carbon substrates and this occurs irrespective of MMO type. This startling result indicates that there must be an additional fractionation step downstream from the MMO reaction which leads to incorporation of 13C-enriched carbon at the expense of dissimilation of 13C-depleted CO2. In these organisms, polyisoprenoid lipids are 13C-enriched compared to polymethylenic lipid which is the reverse of that found in the RuMP types. Serine cycle hopanoids, for example, can vary anywhere from 12% depleted to 10% enriched with respect to the CH4 substrate depending on its concentration. Decrease in growth temperature caused an overall increase in isotopic fractionation. In the total biomass, this effect tended to be masked by physiological factors associated with the type of organism and variation in the bulk composition. The effect was, however, clearly evident when monitoring the 13C signature of total lipid and individual biomarkers. Our results demonstrate that extreme carbon isotopic depletion in field samples and fossil biomarker lipids can be indicative of methanotrophy but the converse is not always true. For example, the hopanoids of a serine cycle methanotroph may be isotopically enriched by more than 10% compared to the substrate methane when the latter is limiting. In other words, hopanoids from some methanotrophs such as M. trichosporium would be indistinguishable from those of cyanobacteria or heterotrophic bacteria on the basis of either chemical structure or carbon isotopic signature.


Geochimica et Cosmochimica Acta | 1990

Identification of the methylhopanes in sediments and petroleum.

Roger E. Summons; Linda L. Jahnke

Three C31 methylhopanes have been prepared by partial synthesis from appropriate diplopterol precursors. 2 alpha-Methyldiplopterol (prepared from 22-hydroxyhopan-3-one), 2 beta-methyldiplopterol (isolated from Methylobacterium organophilum), and a mixture of diplopterol and 3 beta-methyldiplopterol (isolated from Methylococcus capsulatus) were each converted to the corresponding 17 alpha(H), 21 beta(H)-hopane. Comparison of these standards, using gas chromatography--mass spectrometry with multiple reaction monitoring, with the hopanoids from a variety of bitumens showed that all three C31 hydrocarbons may occur in sediments and that they are members of C28 and C30-C36 pseudohomologous series. 2 alpha-Methyl-17 alpha(H), 21 beta(H)-hopane, and 3 beta-methyl-17 alpha(H), 21 beta(H)-hopane are most commonly encountered in mature bitumens. 2 beta-Methyl-17 alpha(H), 21 beta(H)-hopane occurs in some immature bitumens, is much less abundant in others of intermediate maturity, and appears to be absent from mature samples. This, and the similarity of the distribution patterns of homohopane and methylhomohopane isomers, indicates that the common sedimentary methylhopanes are probably derived from biogenic precursors via diagenetic processes analogous to those which give rise to hopanes. In the case of the 2 alpha-methyl series, common to petroleum and mature sediments, derivation from the 2 beta-methyl hopanoids found in certain bacteria implies a maturity-related change in the configuration at C-2.


Geochimica et Cosmochimica Acta | 2002

Hydrogen isotope fractionation in lipids of the methane-oxidizing bacterium Methylococcus capsulatus

Alex L. Sessions; Linda L. Jahnke; Arndt Schimmelmann; J. M. Hayes

Hydrogen isotopic compositions of individual lipids from Methylococcus capsulatus, an aerobic, methane-oxidizing bacterium, were analyzed by hydrogen isotope-ratio-monitoring gas chromatography–mass spectrometry (GC-MS). The purposes of the study were to measure isotopic fractionation factors between methane, water, and lipids and to examine the biochemical processes that determine the hydrogen isotopic composition of lipids. M. capsulatus was grown in six replicate cultures in which the δD values of methane and water were varied independently. Measurement of concomitant changes in δD values of lipids allowed estimation of the proportion of hydrogen derived from each source and the isotopic fractionation associated with the utilization of each source. All lipids examined, including fatty acids, sterols, and hopanols, derived 31.4 ± 1.7% of their hydrogen from methane. This was apparently true whether the cultures were harvested during exponential or stationary phase. Examination of the relevant biochemical pathways indicates that no hydrogen is transferred directly (with C-H bonds intact) from methane to lipids. Accordingly, we hypothesize that all methane H is oxidized to H_2O, which then serves as the H source for all biosynthesis, and that a balance between diffusion of oxygen and water across cell membranes controls the concentration of methane-derived H_2O at 31%. Values for α_(l/w), the isotopic fractionation between lipids and water, were 0.95 for fatty acids and 0.85 for isoprenoid lipids. These fractionations are significantly smaller than those measured in higher plants and algae. Values for α_(l/m), the isotopic fractionation between lipids and methane, were 0.94 for fatty acids and 0.79 for isoprenoid lipids. Based on these results, we predict that methanotrophs living in seawater and consuming methane with typical δD values will produce fatty acids with δD between −50 and −170‰, and sterols and hopanols with δD between −150 and −270‰.


Geobiology | 2008

Characterization and spatial distribution of methanogens and methanogenic biosignatures in hypersaline microbial mats of Baja California

Victoria J. Orphan; Linda L. Jahnke; T. Embaye; K. A. Turk; A. Pernthaler; Roger E. Summons; D. J. Des Marais

Well-developed hypersaline cyanobacterial mats from Guerrero Negro, Baja California Sur, sustain active methanogenesis in the presence of high rates of sulfate reduction. Very little is known about the diversity and distribution of the microorganisms responsible for methane production in these unique ecosystems. Applying a combination of 16S rRNA and metabolic gene surveys, fluorescence in situ hybridization, and lipid biomarker analysis, we characterized the diversity and spatial relationships of methanogens and other archaea in the mat incubation experiments stimulated with methanogenic substrates. The phylogenetic and chemotaxonomic diversity established within mat microcosms was compared with the archaeal diversity and lipid biomarker profiles associated with different depth horizons in the in situ mat. Both archaeal 16S rRNA and methyl coenzyme M reductase gene (mcrA) analysis revealed an enrichment of diverse methanogens belonging to the Methanosarcinales in response to trimethylamine addition. Corresponding with DNA-based detection methods, an increase in lipid biomarkers commonly synthesized by methanogenic archaea was observed, including archaeol and sn-2-hydroxyarchaeol polar lipids, and the free, irregular acyclic isoprenoids, 2,6,10,15,19-pentamethylicosene (PMI) and 2,6,11,15-tetramethylhexadecane (crocetane). Hydrogen enrichment of a novel putative archaeal polar C(30) isoprenoid, a dehydrosqualane, was also documented. Both DNA and lipid biomarker evidence indicate a shift in the dominant methanogenic genera corresponding with depth in the mat. Specifically, incubations of surface layers near the photic zone predominantly supported Methanolobus spp. and PMI, while Methanococcoides and hydroxyarchaeol were preferentially recovered from microcosms of unconsolidated sediments underlying the mat. Together, this work supports the existence of small but robust methylotrophic methanogen assemblages that are vertically stratified within the benthic hypersaline mat and can be distinguished by both their DNA signatures and unique isoprenoid biomarkers.


Astrobiology | 2002

Long-term manipulations of intact microbial mat communities in a greenhouse collaboratory: simulating earth's present and past field environments.

Brad M. Bebout; Steven P. Carpenter; David J. Des Marais; Mykell Discipulo; Tsegereda Embaye; Ferran Garcia-Pichel; Tori M. Hoehler; Mary Hogan; Linda L. Jahnke; Richard M. Keller; Scott R. Miller; Leslie Prufert-Bebout; Chris Raleigh; Michael Rothrock; Kendra A. Turk

Photosynthetic microbial mat communities were obtained from marine hypersaline saltern ponds, maintained in a greenhouse facility, and examined for the effects of salinity variations. Because these microbial mats are considered to be useful analogs of ancient marine communities, they offer insights about evolutionary events during the >3 billion year time interval wherein mats co-evolved with Earths lithosphere and atmosphere. Although photosynthetic mats can be highly dynamic and exhibit extremely high activity, the mats in the present study have been maintained for >1 year with relatively minor changes. The major groups of microorganisms, as assayed using microscopic, genetic, and biomarker methodologies, are essentially the same as those in the original field samples. Field and greenhouse mats were similar with respect to rates of exchange of oxygen and dissolved inorganic carbon across the mat-water interface, both during the day and at night. Field and greenhouse mats exhibited similar rates of efflux of methane and hydrogen. Manipulations of salinity in the water overlying the mats produced changes in the community that strongly resemble those observed in the field. A collaboratory testbed and an array of automated features are being developed to support remote scientific experimentation with the assistance of intelligent software agents. This facility will permit teams of investigators the opportunity to explore ancient environmental conditions that are rare or absent today but that might have influenced the early evolution of these photosynthetic ecosystems.


Geobiology | 2008

Lipid biomarker and phylogenetic analyses to reveal archaeal biodiversity and distribution in hypersaline microbial mat and underlying sediment

Linda L. Jahnke; Victoria J. Orphan; Tsegereda Embaye; K. A. Turk; Michael D. Kubo; Roger E. Summons; D. J. Des Marais

This study has utilized the tools of lipid biomarker chemistry and molecular phylogenetic analyses to assess the archaeal contribution to diversity and abundance within a microbial mat and underlying sediment from a hypersaline lagoon in Baja California. Based on abundance of ether-linked isoprenoids, archaea made up from 1 to 4% of the cell numbers throughout the upper 100 mm of mat and sediment core. Below this depth archaeal lipid was two times more abundant than bacterial. Archaeol was the primary archaeal lipid in all layers. Relatively small amounts of caldarchaeol (dibiphytanyl glyceroltetraether) were present at most depths with phytanyl to biphytanyl molar ratios lowest (approximately 10 : 1) in the 4-17 mm and 100-130 mm horizons, and highest (132 : 1) in the surface 0-2 mm. Lipids with cyclic biphytanyl cores were only detected below 100 mm. A novel polar lipid containing a C(30) isoprenoid (squalane) moiety was isolated from the upper anoxic portion of the core and partially characterized. Hydrocarbon biomarker lipids included pentamethylicosane (2-10 mm) and crocetane (primarily below 10 mm). Archaeal molecular diversity varied somewhat with depth. With the exception of samples at 0-2 mm and 35-65 mm, Thermoplasmatales of marine benthic group D dominated clone libraries. A significant number of phylotypes representing the Crenarchaeota from marine benthic group B were generally present below 17 mm and dominated the 35-65 mm sample. Halobacteriaceae family made up 80% of the clone library of the surface 2 mm, and consisted primarily of sequences affiliated with the haloalkaliphilic Natronomonas pharaonis.


The ISME Journal | 2008

A salinity and sulfate manipulation of hypersaline microbial mats reveals stasis in the cyanobacterial community structure.

Stefan J. Green; Cameron Blackford; Patricia Bucki; Linda L. Jahnke; Lee Prufert-Bebout

The cyanobacterial community structure and composition of hypersaline mats were characterized in an experiment in which native salinity and sulfate levels were modified. Over the course of approximately 1 year, microbial mats collected from Guerrero Negro (Baja, California Sur, Mexico) were equilibrated to lowered salinity (to 35 p.p.t.) and lowered sulfate (below 1 mM) conditions. The structure and composition of the cyanobacterial community in the top 5 mm of these mats were examined using a multifaceted cultivation-independent molecular approach. Overall, the relative abundance of cyanobacteria—roughly 20% of the total bacterial community, as assayed with a PCR-based methodology—was not significantly affected by these manipulations. Furthermore, the mat cyanobacterial community was only modestly influenced by the dramatic changes in sulfate and salinity, and the dominant cyanobacteria were unaffected. Community composition analyses confirmed the dominant presence of the cosmopolitan cyanobacterium Microcoleus chthonoplastes, but also revealed the dominance of another Oscillatorian cyanobacterial group, also detected in other hypersaline microbial mats. Cyanobacterial populations increasing in relative abundance under the modified salinity and sulfate conditions were found to be most closely related to other hypersaline microbial mat organisms, suggesting that the development of these mats under native conditions precludes the development of organisms better suited to the less restrictive experimental conditions. These results also indicate that within a significant range of salinity and sulfate concentrations, the cyanobacterial community is remarkably stable.

Collaboration


Dive into the Linda L. Jahnke's collaboration.

Top Co-Authors

Avatar

Roger E. Summons

NASA Astrobiology Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jack D. Farmer

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Roger E. Summons

NASA Astrobiology Institute

View shared research outputs
Top Co-Authors

Avatar

Sherry L. Cady

Portland State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan J. Green

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Victoria J. Orphan

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge