Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David J. Des Marais is active.

Publication


Featured researches published by David J. Des Marais.


Astrobiology | 2002

Remote Sensing of Planetary Properties and Biosignatures on Extrasolar Terrestrial Planets

David J. Des Marais; Martin Harwit; Kenneth W. Jucks; James F. Kasting; Douglas N. C. Lin; Jonathan I. Lunine; Jean Schneider; Sara Seager; Wesley A. Traub; Neville J. Woolf

The major goals of NASAs Terrestrial Planet Finder (TPF) and the European Space Agencys Darwin missions are to detect terrestrial-sized extrasolar planets directly and to seek spectroscopic evidence of habitable conditions and life. Here we recommend wavelength ranges and spectral features for these missions. We assess known spectroscopic molecular band features of Earth, Venus, and Mars in the context of putative extrasolar analogs. The preferred wavelength ranges are 7-25 microns in the mid-IR and 0.5 to approximately 1.1 microns in the visible to near-IR. Detection of O2 or its photolytic product O3 merits highest priority. Liquid H2O is not a bioindicator, but it is considered essential to life. Substantial CO2 indicates an atmosphere and oxidation state typical of a terrestrial planet. Abundant CH4 might require a biological source, yet abundant CH4 also can arise from a crust and upper mantle more reduced than that of Earth. The range of characteristics of extrasolar rocky planets might far exceed that of the Solar System. Planetary size and mass are very important indicators of habitability and can be estimated in the mid-IR and potentially also in the visible to near-IR. Additional spectroscopic features merit study, for example, features created by other biosignature compounds in the atmosphere or on the surface and features due to Rayleigh scattering. In summary, we find that both the mid-IR and the visible to near-IR wavelength ranges offer valuable information regarding biosignatures and planetary properties; therefore both merit serious scientific consideration for TPF and Darwin.


Earth and Planetary Science Letters | 1984

Carbon and its isotopes in mid-oceanic basaltic glasses

David J. Des Marais; James G. Moore

Abstract Three carbon components are evident in eleven analyzed mid-oceanic basalts: carbon on sample surfaces (resembling adsorbed gases, organic matter, or other non-magmatic carbon species acquired by the glasses subsequent to their eruption), mantle carbon dioxide in vesicles, and mantle carbon dissolved in the glasses. The combustion technique employed recovered only reduced sulfur, all of which appears to be indigenous to the glasses. The dissolved carbon concentration (measured in vesicle-free glass) increases with the eruption depth of the spreading ridge, and is consistent with earlier data which show that magma carbon solubility increases with pressure. The total glass carbon content (dissolved plus vesicular carbon) may be controlled by the depth of the shallowest ridge magma chamber. Carbon isotopic fractionation accompanies magma degassing; vesicle CO 2 is about 3.8‰ enriched in 13 C, relative to dissolved carbon. Despite this fractionation, δ 13 C PDB values for all spreading ridge glasses lie within the range −5.6 and −7.5, and the δ 13 C PDB of mantle carbon likely lies between −5 and −7. The carbon abundances and δ 13 C PDB values of Kilauea East Rift glasses apparently are influenced by the differentiation and movement of magma within that Hawaiian volcano. Using 3 He and carbon data for submarine hydrothermal fluids, the present-day mid-oceanic ridge mantle carbon flux is estimated very roughly to be about 1.0 × 10 13 g C/yr. Such a flux requires 8 Gyr to accumulate the earths present crustal carbon inventory.


Nature | 2005

Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater.

Larry A. Haskin; Alian Wang; Bradley L. Jolliff; Harry Y. McSween; Benton C. Clark; David J. Des Marais; Scott M. McLennan; Nicholas J. Tosca; Joel A. Hurowitz; Jack D. Farmer; Albert S. Yen; Steven W. Squyres; Raymond E. Arvidson; G. Klingelhöfer; C. Schröder; Paulo A. de Souza; Douglas W. Ming; Ralf Gellert; Jutta Zipfel; J. Brückner; James F. Bell; Kenneth E. Herkenhoff; Philip R. Christensen; Steve Ruff; Diana L. Blaney; S. Gorevan; Nathalie A. Cabrol; Larry S. Crumpler; John A. Grant; L. A. Soderblom

Gusev crater was selected as the landing site for the Spirit rover because of the possibility that it once held a lake. Thus one of the rovers tasks was to search for evidence of lake sediments. However, the plains at the landing site were found to be covered by a regolith composed of olivine-rich basaltic rock and windblown ‘global’ dust. The analyses of three rock interiors exposed by the rock abrasion tool showed that they are similar to one another, consistent with having originated from a common lava flow. Here we report the investigation of soils, rock coatings and rock interiors by the Spirit rover from sol (martian day) 1 to sol 156, from its landing site to the base of the Columbia hills. The physical and chemical characteristics of the materials analysed provide evidence for limited but unequivocal interaction between water and the volcanic rocks of the Gusev plains. This evidence includes the softness of rock interiors that contain anomalously high concentrations of sulphur, chlorine and bromine relative to terrestrial basalts and martian meteorites; sulphur, chlorine and ferric iron enrichments in multilayer coatings on the light-toned rock Mazatzal; high bromine concentration in filled vugs and veins within the plains basalts; positive correlations between magnesium, sulphur and other salt components in trench soils; and decoupling of sulphur, chlorine and bromine concentrations in trench soils compared to Gusev surface soils, indicating chemical mobility and separation.


Geochimica et Cosmochimica Acta | 1993

BIOGEOCHEMICAL CYCLES OF CARBON, SULFUR, AND FREE OXYGEN IN A MICROBIAL MAT

Donald E. Canfield; David J. Des Marais

Complete budgets for carbon and oxygen have been constructed for cyanobacterial mats dominated by Microcoleus chthonoplastes from the evaporating ponds of a salt works located in Guerrero Negro, Baja California Sur, Mexico. Included in the budget are measured rates of O2 production, sulfate reduction, and elemental exchange across the mat/brine interface, day and night, at various temperatures and times of the year. We infer from this data the various sinks for O2, as well as the sources of carbon for primary production. To summarize, although seasonal variability exists, a major percentage of the O2 produced during the day did not diffuse out of the mat but was used within the mat to oxidize both organic carbon and the sulfide produced by sulfate reduction. At night, most of the O2 that diffused into the mat was used to oxidize sulfide, with O2 respiration of minor importance. During the day, the internal mat processes of sulfate reduction and O2 respiration generated as much or more inorganic carbon (DIC) for primary production as diffusion into the mat. Also, oxygenic photosynthesis was the most important process of carbon fixation, although anoxygenic photosynthesis may have been important at low light levels during some times of the year. At night, the DIC lost from the mat was mostly from sulfate reduction. Elemental fluxes across the mat/brine interface indicated that carbon with an oxidation state of greater than zero was taken up by the mat during the day and liberated from the mat at night. Overall, carbon with an average oxidation state of near zero accumulated in the mat. Both carbon fixation and carbon oxidation rates varied with temperature by a similar amount. These mats are thus closely coupled systems where rapid rates of photosynthesis both require and fuel rapid rates of heterotrophic carbon oxidation.


Nature | 2001

The role of microbial mats in the production of reduced gases on the early Earth

Tori M. Hoehler; Brad M. Bebout; David J. Des Marais

The advent of oxygenic photosynthesis on Earth may have increased global biological productivity by a factor of 100–1,000 (ref. 1), profoundly affecting both geochemical and biological evolution. Much of this new productivity probably occurred in microbial mats, which incorporate a range of photosynthetic and anaerobic microorganisms in extremely close physical proximity. The potential contribution of these systems to global biogeochemical change would have depended on the nature of the interactions among these mat microorganisms. Here we report that in modern, cyanobacteria-dominated mats from hypersaline environments in Guerrero Negro, Mexico, photosynthetic microorganisms generate H2 and CO—gases that provide a basis for direct chemical interactions with neighbouring chemotrophic and heterotrophic microbes. We also observe an unexpected flux of CH4, which is probably related to H2-based alteration of the redox potential within the mats. These fluxes would have been most important during the nearly 2-billion-year period during which photosynthetic mats contributed substantially to biological productivity—and hence, to biogeochemistry—on Earth. In particular, the large fluxes of H2 that we observe could, with subsequent escape to space, represent a potentially important mechanism for oxidation of the primitive oceans and atmosphere.


Journal of Geophysical Research | 1999

Exploring for a record of ancient Martian life

Jack D. Farmer; David J. Des Marais

The immediate task facing exopaleontology is to define a strategy to explore Mars for a fossil record during the decade-long exploration program that lies ahead. Consideration of the quality of paleontological information preserved under different geological conditions is important if we are to develop a strategy with broad applicability. The preservation of microbial fossils is strongly influenced by the physical, chemical, and biological factors of the environment which, acting together, determine the types of information that will be captured and retained in the rock record. In detrital sedimentary systems, preservation is favored by rapid burial in fine-grained, clay-rich sediments. In chemical sedimentary systems, preservation is enhanced by rapid entombment in fine-grained chemical precipitates. For long-term preservation, host rocks must be composed of stable minerals that are resistant to chemical weathering and that form an impermeable matrix and closed chemical system to protect biosignatures from alteration during subsequent diagenesis or metamorphism. In this context, host rocks composed of highly ordered, chemically stable mineral phases, like silica (e.g., cherts) or phosphate (e.g., phosphorites), are especially favored. Such lithologies tend to have very long crustal residence times and, along with carbonates and shales, are the most common host rocks for the Precambrian microfossil record on Earth. Although we make the defensible assumption that Mars was more like the Earth early in its history, clearly, the geological and historical differences between the two planets are many. Such differences must be carefully considered when adapting an Earth-based strategy to Mars.


Precambrian Research | 2001

Precambrian superplumes and supercontinents: a record in black shales, carbon isotopes, and paleoclimates?

Kent C. Condie; David J. Des Marais; Dallas H. Abbott

Prominent maxima in black shale abundance and in black shale/total shale ratio occur at 2.0‐1.7 Ga, with less prominent peaks in the Late Neoproterozoic (800‐600 Ma) and in the Late Archean (2.7‐2.5 Ga). Peaks in chemical index of alteration (CIA) of shales at the same times suggest corresponding warm paleoclimates. The peaks in CIA and black shale abundance are correlated in time at a 94% confidence level. The black shale and CIA peaks may reflect the combined effects of mantle superplume events and supercontinent formation at 2.7 and 1.9 Ga. Mantle superplume events may have introduced large amounts of CO2 into the atmosphere‐ocean system, increasing depositional rates of carbon and increasing global warming. Increased black shale deposition may reflect some combination of: (1) increased oceanic hydrothermal fluxes (introducing nutrients); (2) anoxia on continental shelves; and (3) disrupted ocean currents. The apparent absence of carbon isotope anomalies at these times reflects an increase in the deposition and burial rate of both reduced and oxidized carbon. Peaks in black shale abundance at ! 2.1 Ga and 800‐600 Ma correlate with peaks in ! 13 C in marine carbonates, increases in atmospheric oxygen, and with high CIA values in shales. These are all consistent with higher rates of organic carbon burial in black shales at these times. These peaks may record the breakup of supercontinents at 2.2‐2.0 Ga and again at 800‐600 Ma, which resulted in increased numbers of partially closed marine basins, disruption of ocean currents, and increased hydrothermal vents at ocean ridges, all of which led to widespread anoxia.


Astrobiology | 2003

The NASA Astrobiology Roadmap.

David J. Des Marais; Louis J. Allamandola; Steven A. Benner; Alan P. Boss; David W. Deamer; Paul G. Falkowski; Jack D. Farmer; S. Blair Hedges; Bruce M. Jakosky; Andrew H. Knoll; David R. Liskowsky; Victoria S. Meadows; Michael A. Meyer; Carl B. Pilcher; Kenneth H. Nealson; Alfred M. Spormann; Jonathan D. Trent; William W. Turner; Neville J. Woolf; Harold W. Yorke

The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.


Applied and Environmental Microbiology | 2001

Signature lipids and stable carbon isotope analyses of Octopus Spring hyperthermophilic communities compared with those of Aquificales representatives.

Linda L. Jahnke; Wolfgang Eder; Robert Huber; Janet M. Hope; Kai-Uwe Hinrichs; J. M. Hayes; David J. Des Marais; Sherry L. Cady; Roger E. Summons

ABSTRACT The molecular and isotopic compositions of lipid biomarkers of cultured Aquificales genera have been used to study the community and trophic structure of the hyperthermophilic pink streamers and vent biofilm from Octopus Spring. Thermocrinis ruber, Thermocrinis sp. strain HI 11/12,Hydrogenobacterthermophilus TK-6,Aquifex pyrophilus, and Aquifex aeolicusall contained glycerol-ether phospholipids as well as acyl glycerides. The n-C20:1 andcy-C21 fatty acids dominated all of theAquificales, while the alkyl glycerol ethers were mainly C18:0. These Aquificales biomarkers were major constituents of the lipid extracts of two Octopus Spring samples, a biofilm associated with the siliceous vent walls, and the well-known pink streamer community (PSC). Both the biofilm and the PSC contained mono- and dialkyl glycerol ethers in which C18 and C20 alkyl groups were prevalent. Phospholipid fatty acids included both the Aquificales n-C20:1 andcy-C21, plus a series ofiso-branched fatty acids (i-C15:0 toi-C21:0), indicating an additional bacterial component. Biomass and lipids from the PSC were depleted in13C relative to source water CO2 by 10.9 and 17.2‰, respectively. The C20–21 fatty acids of the PSC were less depleted than the iso-branched fatty acids, 18.4 and 22.6‰, respectively. The biomass of T. rubergrown on CO2 was depleted in 13C by only 3.3‰ relative to C source. In contrast, biomass was depleted by 19.7‰ when formate was the C source. Independent of carbon source, T. ruber lipids were heavier than biomass (+1.3‰). The depletion in the C20–21 fatty acids from the PSC indicates thatThermocrinis biomass must be similarly depleted and too light to be explained by growth on CO2. Accordingly,Thermocrinis in the PSC is likely to have utilized formate, presumably generated in the spring source region.


Geochimica et Cosmochimica Acta | 1999

Carbon isotopic fractionation in lipids from methanotrophic bacteria II: the effects of physiology and environmental parameters on the biosynthesis and isotopic signatures of biomarkers.

Linda L. Jahnke; Roger E. Summons; Janet M. Hope; David J. Des Marais

Controls on the carbon isotopic signatures of methanotroph biomarkers have been further explored using cultured organisms. Growth under conditions which select for the membrane-bound particulate form of the methane monooxygenase enzyme (pMMO) leads to a significantly higher isotopic fractionation than does growth based on the soluble isozyme in both RuMP and serine pathway methanotrophs; in an RuMP type the delta delta 13Cbiomass equaled -23.9% for pMMO and -12.6% for sMMO. The distribution of biomarker lipids does not appear to be significantly affected by the dominance of one or the other MMO type and their isotopic compositions generally track those of the parent biomass. The 13C fractionation behaviour of serine pathway methanotrophs is very complex, reflecting the assimilation of both methane and carbon dioxide and concomitant dissimilation of methane-derived carbon. A limitation in CH4 availability leads to the production of biomass which is 13C-enriched with respect to both carbon substrates and this occurs irrespective of MMO type. This startling result indicates that there must be an additional fractionation step downstream from the MMO reaction which leads to incorporation of 13C-enriched carbon at the expense of dissimilation of 13C-depleted CO2. In these organisms, polyisoprenoid lipids are 13C-enriched compared to polymethylenic lipid which is the reverse of that found in the RuMP types. Serine cycle hopanoids, for example, can vary anywhere from 12% depleted to 10% enriched with respect to the CH4 substrate depending on its concentration. Decrease in growth temperature caused an overall increase in isotopic fractionation. In the total biomass, this effect tended to be masked by physiological factors associated with the type of organism and variation in the bulk composition. The effect was, however, clearly evident when monitoring the 13C signature of total lipid and individual biomarkers. Our results demonstrate that extreme carbon isotopic depletion in field samples and fossil biomarker lipids can be indicative of methanotrophy but the converse is not always true. For example, the hopanoids of a serine cycle methanotroph may be isotopically enriched by more than 10% compared to the substrate methane when the latter is limiting. In other words, hopanoids from some methanotrophs such as M. trichosporium would be indistinguishable from those of cyanobacteria or heterotrophic bacteria on the basis of either chemical structure or carbon isotopic signature.

Collaboration


Dive into the David J. Des Marais's collaboration.

Top Co-Authors

Avatar

Jack D. Farmer

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raymond E. Arvidson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Scott L. Murchie

Johns Hopkins University Applied Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

Douglas W. Ming

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John P. Grotzinger

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David T. Vaniman

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge