Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linda Madisen is active.

Publication


Featured researches published by Linda Madisen.


Nature Neuroscience | 2010

A robust and high-throughput Cre reporting and characterization system for the whole mouse brain

Linda Madisen; Theresa A. Zwingman; Susan M. Sunkin; Seung Wook Oh; Hatim A. Zariwala; Hong Gu; Lydia Ng; Richard D. Palmiter; Michael Hawrylycz; Allan R. Jones; Ed Lein; Hongkui Zeng

The Cre/lox system is widely used in mice to achieve cell-type-specific gene expression. However, a strong and universally responding system to express genes under Cre control is still lacking. We have generated a set of Cre reporter mice with strong, ubiquitous expression of fluorescent proteins of different spectra. The robust native fluorescence of these reporters enables direct visualization of fine dendritic structures and axonal projections of the labeled neurons, which is useful in mapping neuronal circuitry, imaging and tracking specific cell populations in vivo. Using these reporters and a high-throughput in situ hybridization platform, we are systematically profiling Cre-directed gene expression throughout the mouse brain in several Cre-driver lines, including new Cre lines targeting different cell types in the cortex. Our expression data are displayed in a public online database to help researchers assess the utility of various Cre-driver lines for cell-type-specific genetic manipulation.


Nature Neuroscience | 2012

A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing

Linda Madisen; Tianyi Mao; Henner Koch; Jia Min Zhuo; Antal Berényi; Shigeyoshi Fujisawa; Yun Wei A Hsu; Alfredo J. Garcia; Xuan Gu; Sébastien Zanella; Jolene Kidney; Hong Gu; Yimei Mao; Bryan M. Hooks; Edward S. Boyden; György Buzsáki; Jan-Marino Ramirez; Allan R. Jones; Karel Svoboda; Xue Han; Eric E. Turner; Hongkui Zeng

Cell type–specific expression of optogenetic molecules allows temporally precise manipulation of targeted neuronal activity. Here we present a toolbox of four knock-in mouse lines engineered for strong, Cre-dependent expression of channelrhodopsins ChR2-tdTomato and ChR2-EYFP, halorhodopsin eNpHR3.0 and archaerhodopsin Arch-ER2. All four transgenes mediated Cre-dependent, robust activation or silencing of cortical pyramidal neurons in vitro and in vivo upon light stimulation, with ChR2-EYFP and Arch-ER2 demonstrating light sensitivity approaching that of in utero or virally transduced neurons. We further show specific photoactivation of parvalbumin-positive interneurons in behaving ChR2-EYFP reporter mice. The robust, consistent and inducible nature of our ChR2 mice represents a significant advance over previous lines, and the Arch-ER2 and eNpHR3.0 mice are to our knowledge the first demonstration of successful conditional transgenic optogenetic silencing. When combined with the hundreds of available Cre driver lines, this optimized toolbox of reporter mice will enable widespread investigations of neural circuit function with unprecedented reliability and accuracy.


Nature Neuroscience | 2016

Adult mouse cortical cell taxonomy revealed by single cell transcriptomics

Bosiljka Tasic; Vilas Menon; Thuc Nghi Nguyen; Tae Kyung Kim; Tim Jarsky; Zizhen Yao; Boaz P. Levi; Lucas T. Gray; Staci A. Sorensen; Tim Dolbeare; Darren Bertagnolli; Jeff Goldy; Nadiya V. Shapovalova; Sheana Parry; Chang-Kyu Lee; Kimberly A. Smith; Amy Bernard; Linda Madisen; Susan M. Sunkin; Michael Hawrylycz; Christof Koch; Hongkui Zeng

Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. We constructed a cellular taxonomy of one cortical region, primary visual cortex, in adult mice on the basis of single-cell RNA sequencing. We identified 49 transcriptomic cell types, including 23 GABAergic, 19 glutamatergic and 7 non-neuronal types. We also analyzed cell type–specific mRNA processing and characterized genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we found that some of our transcriptomic cell types displayed specific and differential electrophysiological and axon projection properties, thereby confirming that the single-cell transcriptomic signatures can be associated with specific cellular properties.


Neuron | 2015

Transgenic Mice for Intersectional Targeting of Neural Sensors and Effectors with High Specificity and Performance

Linda Madisen; Aleena R. Garner; Daisuke Shimaoka; Amy S. Chuong; Nathan Cao Klapoetke; Lu Li; Alexander van der Bourg; Yusuke Niino; Ladan Egolf; Claudio Monetti; Hong Gu; Maya Mills; Adrian Cheng; Bosiljka Tasic; Thuc Nghi Nguyen; Susan M. Sunkin; Andrea Benucci; Andras Nagy; Atsushi Miyawaki; Fritjof Helmchen; Ruth M. Empson; Thomas Knöpfel; Edward S. Boyden; R. Clay Reid; Matteo Carandini; Hongkui Zeng

UNLABELLED An increasingly powerful approach for studying brain circuits relies on targeting genetically encoded sensors and effectors to specific cell types. However, current approaches for this are still limited in functionality and specificity. Here we utilize several intersectional strategies to generate multiple transgenic mouse lines expressing high levels of novel genetic tools with high specificity. We developed driver and double reporter mouse lines and viral vectors using the Cre/Flp and Cre/Dre double recombinase systems and established a new, retargetable genomic locus, TIGRE, which allowed the generation of a large set of Cre/tTA-dependent reporter lines expressing fluorescent proteins, genetically encoded calcium, voltage, or glutamate indicators, and optogenetic effectors, all at substantially higher levels than before. High functionality was shown in example mouse lines for GCaMP6, YCX2.60, VSFP Butterfly 1.2, and Jaws. These novel transgenic lines greatly expand the ability to monitor and manipulate neuronal activities with increased specificity. VIDEO ABSTRACT


The Journal of Neuroscience | 2012

A Cre-Dependent GCaMP3 Reporter Mouse for Neuronal Imaging In Vivo

Hatim A. Zariwala; Bart G. Borghuis; Tycho M. Hoogland; Linda Madisen; Lin Tian; Chris I. De Zeeuw; Hongkui Zeng; Loren L. Looger; Karel Svoboda; Tsai-Wen Chen

Fluorescent calcium indicator proteins, such as GCaMP3, allow imaging of activity in genetically defined neuronal populations. GCaMP3 can be expressed using various gene delivery methods, such as viral infection or electroporation. However, these methods are invasive and provide inhomogeneous and nonstationary expression. Here, we developed a genetic reporter mouse, Ai38, which expresses GCaMP3 in a Cre-dependent manner from the ROSA26 locus, driven by a strong CAG promoter. Crossing Ai38 with appropriate Cre mice produced robust GCaMP3 expression in defined cell populations in the retina, cortex, and cerebellum. In the primary visual cortex, visually evoked GCaMP3 signals showed normal orientation and direction selectivity. GCaMP3 signals were rapid, compared with virally expressed GCaMP3 and synthetic calcium indicators. In the retina, Ai38 allowed imaging spontaneous calcium waves in starburst amacrine cells during development, and light-evoked responses in ganglion cells in adult tissue. Our results show that the Ai38 reporter mouse provides a flexible method for targeted expression of GCaMP3.


Nature | 2014

Scalable control of mounting and attack by Esr1 + neurons in the ventromedial hypothalamus

Hyosang Lee; Dong-Wook Kim; Ryan Remedios; Todd E. Anthony; Angela Chang; Linda Madisen; Hongkui Zeng; David J. Anderson

Social behaviours, such as aggression or mating, proceed through a series of appetitive and consummatory phases that are associated with increasing levels of arousal. How such escalation is encoded in the brain, and linked to behavioural action selection, remains an unsolved problem in neuroscience. The ventrolateral subdivision of the murine ventromedial hypothalamus (VMHvl) contains neurons whose activity increases during male–male and male–female social encounters. Non-cell-type-specific optogenetic activation of this region elicited attack behaviour, but not mounting. We have identified a subset of VMHvl neurons marked by the oestrogen receptor 1 (Esr1), and investigated their role in male social behaviour. Optogenetic manipulations indicated that Esr1+ (but not Esr1−) neurons are sufficient to initiate attack, and that their activity is continuously required during ongoing agonistic behaviour. Surprisingly, weaker optogenetic activation of these neurons promoted mounting behaviour, rather than attack, towards both males and females, as well as sniffing and close investigation. Increasing photostimulation intensity could promote a transition from close investigation and mounting to attack, within a single social encounter. Importantly, time-resolved optogenetic inhibition experiments revealed requirements for Esr1+ neurons in both the appetitive (investigative) and the consummatory phases of social interactions. Combined optogenetic activation and calcium imaging experiments in vitro, as well as c-Fos analysis in vivo, indicated that increasing photostimulation intensity increases both the number of active neurons and the average level of activity per neuron. These data suggest that Esr1+ neurons in VMHvl control the progression of a social encounter from its appetitive through its consummatory phases, in a scalable manner that reflects the number or type of active neurons in the population.


Frontiers in Neural Circuits | 2014

Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation

Julie A. Harris; Karla E. Hirokawa; Staci A. Sorensen; Hong Gu; Maya Mills; Lydia Ng; Phillip Bohn; Marty T. Mortrud; Benjamin Ouellette; Jolene Kidney; Kimberly A. Smith; Chinh Dang; Susan M. Sunkin; Amy Bernard; Seung Wook Oh; Linda Madisen; Hongkui Zeng

Significant advances in circuit-level analyses of the brain require tools that allow for labeling, modulation of gene expression, and monitoring and manipulation of cellular activity in specific cell types and/or anatomical regions. Large-scale projects and individual laboratories have produced hundreds of gene-specific promoter-driven Cre mouse lines invaluable for enabling genetic access to subpopulations of cells in the brain. However, the potential utility of each line may not be fully realized without systematic whole brain characterization of transgene expression patterns. We established a high-throughput in situ hybridization (ISH), imaging and data processing pipeline to describe whole brain gene expression patterns in Cre driver mice. Currently, anatomical data from over 100 Cre driver lines are publicly available via the Allen Institutes Transgenic Characterization database, which can be used to assist researchers in choosing the appropriate Cre drivers for functional, molecular, or connectional studies of different regions and/or cell types in the brain.


Nature Neuroscience | 2013

Olfactory cortical neurons read out a relative time code in the olfactory bulb.

Rafi Haddad; Anne Lanjuin; Linda Madisen; Hongkui Zeng; Venkatesh N. Murthy; Naoshige Uchida

Odor stimulation evokes complex spatiotemporal activity in the olfactory bulb, suggesting that both the identity of activated neurons and the timing of their activity convey information about odors. However, whether and how downstream neurons decipher these temporal patterns remains unknown. We addressed this question by measuring the spiking activity of downstream neurons while optogenetically stimulating two foci in the olfactory bulb with varying relative timing in mice. We found that the overall spike rates of piriform cortex neurons (PCNs) were sensitive to the relative timing of activation. Posterior PCNs showed higher sensitivity to relative input times than neurons in the anterior piriform cortex. In contrast, olfactory bulb neurons rarely showed such sensitivity. Thus, the brain can transform a relative time code in the periphery into a firing rate–based representation in central brain areas, providing evidence for the relevance of a relative time–based code in the olfactory bulb.


Frontiers in Systems Neuroscience | 2011

Visual tuning properties of genetically identified layer 2/3 neuronal types in the primary visual cortex of Cre-transgenic mice

Hatim A. Zariwala; Linda Madisen; Kurt F. Ahrens; Amy Bernard; Edward S. Lein; Allan R. Jones; Hongkui Zeng

The putative excitatory and inhibitory cell classes within the mouse primary visual cortex V1 have different functional properties as studied using recording microelectrode. Excitatory neurons show high selectivity for the orientation angle of moving gratings while the putative inhibitory neurons show poor selectivity. However, the study of selectivity of the genetically identified interneurons and their subtypes remain controversial. Here we use novel Cre-driver and reporter mice to identify genetic subpopulations in vivo for two-photon calcium dye imaging: Wfs1(+)/Gad1(−) mice that labels layer 2/3 excitatory cell population and Pvalb(+)/Gad1(+) mice that labels a genetic subpopulation of inhibitory neurons. The cells in both mice were identically labeled with a tdTomato protein, visible in vivo, using a Cre-reporter line. We found that the Wfs1(+) cells exhibited visual tuning properties comparable to the excitatory population, i.e., high selectivity and tuning to the angle, direction, and spatial frequency of oriented moving gratings. The functional tuning of Pvalb(+) neurons was consistent with previously reported narrow-spiking interneurons in microelectrode studies, exhibiting poorer selectivity than the excitatory neurons. This study demonstrates the utility of Cre-transgenic mouse technology in selective targeting of subpopulations of neurons and makes them amenable to structural, functional, and connectivity studies.


Progress in Brain Research | 2012

Mouse transgenic approaches in optogenetics.

Hongkui Zeng; Linda Madisen

A major challenge in neuroscience is to understand how universal behaviors, such as sensation, movement, cognition, and emotion, arise from the interactions of specific cells that are present within intricate neural networks in the brain. Dissection of such complex networks has typically relied on disturbing the activity of individual gene products, perturbing neuronal activities pharmacologically, or lesioning specific brain regions, to investigate the networks response in a behavioral output. Though informative for many kinds of studies, these approaches are not sufficiently fine-tuned for examining the functionality of specific cells or cell classes in a spatially or temporally restricted context. Recent advances in the field of optogenetics now enable researchers to monitor and manipulate the activity of genetically defined cell populations with the speed and precision uniquely afforded by light. Transgenic mice engineered to express optogenetic tools in a cell type-specific manner offer a powerful approach for examining the role of particular cells in discrete circuits in a defined and reproducible way. Not surprisingly then, recent years have seen substantial efforts directed toward generating transgenic mouse lines that express functionally relevant levels of optogenetic tools. In this chapter, we review the state of these efforts and consider aspects of the current technology that would benefit from additional improvement.

Collaboration


Dive into the Linda Madisen's collaboration.

Top Co-Authors

Avatar

Hongkui Zeng

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Gragerov

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

John G. Hohmann

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Hong Gu

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Kimberly A. Smith

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Susan M. Sunkin

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Thuc Nghi Nguyen

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Allan R. Jones

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Amy Bernard

Allen Institute for Brain Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge