Linda Stempora
Emory University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Linda Stempora.
Nature Medicine | 2009
T Weaver; Charafeddine Ah; Avinash Agarwal; Alexandra P. Turner; Maria Russell; F. Leopardi; Robert L. Kampen; Linda Stempora; M. Song; Christian P. Larsen; Allan D. Kirk
Memory T cells promote allograft rejection particularly in co-stimulation blockade–based immunosuppressive regimens. Here we show that the CD2-specific fusion protein alefacept (lymphocyte function–associated antigen-3–Ig; LFA -3–Ig) selectively eliminates memory T cells and, when combined with a co-stimulation blockade–based regimen using cytotoxic T lymphocyte antigen-4 (CTLA-4)-Ig, a CD80- and CD86-specific fusion protein, prevents renal allograft rejection and alloantibody formation in nonhuman primates. These results support the immediate translation of a regimen for the prevention of allograft rejection without the use of calcineurin inhibitors, steroids or pan–T cell depletion.
American Journal of Transplantation | 2011
Denise J. Lo; T Weaver; Linda Stempora; Aneesh K. Mehta; Mandy L. Ford; Christian P. Larsen; Allan D. Kirk
Costimulation blockade (CoB), specifically CD28/B7 inhibition with belatacept, is an emerging clinical replacement for calcineurin inhibitor‐based immunosuppression in allotransplantation. However, there is accumulating evidence that belatacept incompletely controls alloreactive T cells that lose CD28 expression during terminal differentiation. We have recently shown that the CD2‐specific fusion protein alefacept controls costimulation blockade‐resistant allograft rejection in nonhuman primates. Here, we have investigated the relationship between human alloreactive T cells, costimulation blockade sensitivity and CD2 expression to determine whether these findings warrant potential clinical translation. Using polychromatic flow cytometry, we found that CD8+ effector memory T cells are distinctly high CD2 and low CD28 expressors. Alloresponsive CD8+CD2hiCD28− T cells contained the highest proportion of cells with polyfunctional cytokine (IFNγ, TNF and IL‐2) and cytotoxic effector molecule (CD107a and granzyme B) expression capability. Treatment with belatacept in vitro incompletely attenuated allospecific proliferation, but alefacept inhibited belatacept‐resistant proliferation. These results suggest that highly alloreactive effector T cells exert their late stage functions without reliance on ongoing CD28/B7 costimulation. Their high CD2 expression increases their susceptibility to alefacept. These studies combined with in vivo nonhuman primate data provide a rationale for translation of an immunosuppression regimen pairing alefacept and belatacept to human renal transplantation.
American Journal of Transplantation | 2006
Leslie S. Kean; Kelly Hamby; Brent H. Koehn; E. Lee; S. Coley; Linda Stempora; Andrew B. Adams; E. Heiss; Thomas C. Pearson; Christian P. Larsen
Although T‐cell CD28/CD40 costimulation blockade represents a powerful mechanism to promote immune tolerance during murine allotransplantation, it has not yet been successfully translated to clinical transplantation. We determined the impact of natural killer (NK) cells on costimulation blockade‐resistant rejection of donor bone marrow. We found that NK cells represent a potent barrier to engraftment: host NK depletion led to increased donor stem cell survival, increased mixed hematopoietic chimerism and to engraftment of low doses of donor marrow (1 × 108/kg) that were otherwise rejected. To understand the mechanisms of NK alloreactivity, we employed an in vivo NK‐specific cytotoxicity assay. We found that an increased proportion of target cells were killed between days 2 and 8 after cell transfer, and that NK killing of parental targets was inducible: NK cells preprimed with allotargets were more efficient at their elimination upon reexposure. Finally, both transplant and in vivo NK‐killing models were used to determine the contribution of LFA‐1 to NK alloreactivity. Blockade of LFA‐1 led to decreased NK‐mediated killing, and increased alloengraftment. These results identify NK alloreactivity as an integral component to costimulation blockade‐resistant rejection, and suggest that its inhibition may represent an important target in the clinical translation of tolerance‐induction transplantation.
American Journal of Transplantation | 2012
Andrew J. Page; Swetha Srinivasan; Karnail Singh; Maria C. Russell; Kelly Hamby; Taylor Deane; Sharon Sen; Linda Stempora; F. Leopardi; Andrew A. Price; Elizabeth Strobert; Keith A. Reimann; Allan D. Kirk; Christian P. Larsen; Leslie S. Kean
In murine models, T‐cell costimulation blockade of the CD28:B7 and CD154:CD40 pathways synergistically promotes immune tolerance after transplantation. While CD28 blockade has been successfully translated to the clinic, translation of blockade of the CD154:CD40 pathway has been less successful, in large part due to thromboembolic complications associated with anti‐CD154 antibodies. Translation of CD40 blockade has also been slow, in part due to the fact that synergy between CD40 blockade and CD28 blockade had not yet been demonstrated in either primate models or humans. Here we show that a novel, nondepleting CD40 monoclonal antibody, 3A8, can combine with combined CTLA4Ig and sirolimus in a well‐established primate bone marrow chimerism‐induction model. Prolonged engraftment required the presence of all three agents during maintenance therapy, and resulted in graft acceptance for the duration of immunosuppressive treatment, with rejection resulting upon immunosuppression withdrawal. Flow cytometric analysis revealed that upregulation of CD95 expression on both CD4+ and CD8+ T cells correlated with rejection, suggesting that CD95 may be a robust biomarker of graft loss. These results are the first to demonstrate prolonged chimerism in primates treated with CD28/mTOR blockade and nondepletional CD40 blockade, and support further investigation of combined costimulation blockade targeting the CD28 and CD40 pathways.
Blood | 2015
Yvonne Suessmuth; Rithun Mukherjee; Benjamin Watkins; Divya T. Koura; Knut Finstermeier; Cindy Desmarais; Linda Stempora; John Horan; Amelia Langston; Muna Qayed; Hanna Jean Khoury; Audrey Grizzle; Jennifer Cheeseman; Jason A. Conger; Jennifer Robertson; Aneesah Garrett; Allan D. Kirk; Edmund K. Waller; Bruce R. Blazar; Aneesh K. Mehta; Harlan Robins; Leslie S. Kean
Although cytomegalovirus (CMV) reactivation has long been implicated in posttransplant immune dysfunction, the molecular mechanisms that drive this phenomenon remain undetermined. To address this, we combined multiparameter flow cytometric analysis and T-cell subpopulation sorting with high-throughput sequencing of the T-cell repertoire, to produce a thorough evaluation of the impact of CMV reactivation on T-cell reconstitution after unrelated-donor hematopoietic stem cell transplant. We observed that CMV reactivation drove a >50-fold specific expansion of Granzyme B(high)/CD28(low)/CD57(high)/CD8(+) effector memory T cells (Tem) and resulted in a linked contraction of all naive T cells, including CD31(+)/CD4(+) putative thymic emigrants. T-cell receptor β (TCRβ) deep sequencing revealed a striking contraction of CD8(+) Tem diversity due to CMV-specific clonal expansions in reactivating patients. In addition to querying the topography of the expanding CMV-specific T-cell clones, deep sequencing allowed us, for the first time, to exhaustively evaluate the underlying TCR repertoire. Our results reveal new evidence for significant defects in the underlying CD8 Tem TCR repertoire in patients who reactivate CMV, providing the first molecular evidence that, in addition to driving expansion of virus-specific cells, CMV reactivation has a detrimental impact on the integrity and heterogeneity of the rest of the T-cell repertoire. This trial was registered at www.clinicaltrials.gov as #NCT01012492.
American Journal of Transplantation | 2010
Christian P. Larsen; Andrew J. Page; Kelly Hamby Linzie; Maria C. Russell; Taylor Deane; Linda Stempora; Elizabeth Strobert; M. C. T. Penedo; Thea Ward; Roger W. Wiseman; David H. O'Connor; Weston P. Miller; Sharon Sen; Karnail Singh; Leslie S. Kean
In murine models, mixed hematopoietic chimerism induction leads to robust immune tolerance. However, translation to primates and to patients has been difficult. In this study, we used a novel MHC‐defined rhesus macaque model to examine the impact of MHC matching on the stability of costimulation blockade‐/sirolimus‐mediated chimerism, and to probe possible mechanisms of bone marrow rejection after nonmyeloablative transplant. Using busulfan‐based pretransplant preparation and maintenance immunosuppression with sirolimus, as well as CD28 and CD154 blockade, all recipients demonstrated donor engraftment after transplant. However, the mixed chimerism that resulted was compartmentalized, with recipients demonstrating significantly higher whole blood chimerism compared to T cell chimerism. Thus, the vast majority of T cells presenting posttransplant were recipient—rather than donor‐derived. Surprisingly, even in MHC‐matched transplants, rejection of donor hematopoiesis predominated after immunosuppression withdrawal. Weaning of immunosuppression was associated with a surge of antigen‐experienced T cells, and transplant rejection was associated with the acquisition of donor‐directed T cell alloreactivity. These results suggest that a reservoir of alloreactive cells was present despite prior costimulation blockade and sirolimus, and that the postimmunosuppression lymphocytic rebound may have lead to a phenotypic shift in these recipient T cells towards an activated, antigen‐experienced phenotype, and ultimately, to transplant rejection.
Blood | 2011
Leslie S. Kean; Sharon Sen; Olusegun O. Onabajo; Karnail Singh; Jennifer Robertson; Linda Stempora; Aylin C. Bonifacino; Mark E. Metzger; Daniel E. L. Promislow; Joseph J. Mattapallil; Robert E. Donahue
In this study, we used the rhesus macaque model to determine the impact that AMD3100 has on lymphocyte mobilization, both alone and in combination with G-CSF. Our results indicate that, unlike G-CSF, AMD3100 substantially mobilizes both B and T lymphocytes into the peripheral blood. This led to significant increases in the peripheral blood content of both effector and regulatory T-cell populations, which translated into greater accumulation of these cells in the resulting leukapheresis products. Notably, CD4(+)/CD25(high)/CD127(low)/FoxP3(+) Tregs were efficiently mobilized with AMD3100-containing regimens, with as much as a 4.0-fold enrichment in the leukapheresis product compared with G-CSF alone. CD8(+) T cells were mobilized to a greater extent than CD4(+) T cells, with accumulation of 3.7 ± 0.4-fold more total CD8+ T cells and 6.2 ± 0.4-fold more CD8(+) effector memory T cells in the leukapheresis product compared with G-CSF alone. Given that effector memory T-cell subpopulations may mediate less GVHD compared with other effector T-cell populations and that Tregs are protective against GVHD, our results indicate that AMD3100 may mobilize a GVHD-protective T-cell repertoire, which would be of benefit in allogeneic hematopoietic stem cell transplantation.
Blood | 2010
Weston P. Miller; Swetha Srinivasan; Angela Panoskaltsis-Mortari; Karnail Singh; Sharon Sen; Kelly Hamby; Taylor Deane; Linda Stempora; Jonathan Beus; Alexa Turner; Caleb Wheeler; Daniel C. Anderson; Prachi Sharma; Anapatricia Garcia; Elizabeth Strobert; Eric Elder; Ian Crocker; Timothy Crenshaw; M. Cecilia T. Penedo; Thea Ward; M. Song; John Horan; Christian P. Larsen; Bruce R. Blazar; Leslie S. Kean
We have developed a major histocompatibility complex-defined primate model of graft-versus-host disease (GVHD) and have determined the effect that CD28/CD40-directed costimulation blockade and sirolimus have on this disease. Severe GVHD developed after haploidentical transplantation without prophylaxis, characterized by rapid clinical decline and widespread T-cell infiltration and organ damage. Mechanistic analysis showed activation and possible counter-regulation, with rapid T-cell expansion and accumulation of CD8(+) and CD4(+) granzyme B(+) effector cells and FoxP3(pos)/CD27(high)/CD25(pos)/CD127(low) CD4(+) T cells. CD8(+) cells down-regulated CD127 and BCl-2 and up-regulated Ki-67, consistent with a highly activated, proliferative profile. A cytokine storm also occurred, with GVHD-specific secretion of interleukin-1 receptor antagonist (IL-1Ra), IL-18, and CCL4. Costimulation Blockade and Sirolimus (CoBS) resulted in striking protection against GVHD. At the 30-day primary endpoint, CoBS-treated recipients showed 100% survival compared with no survival in untreated recipients. CoBS treatment resulted in survival, increasing from 11.6 to 62 days (P < .01) with blunting of T-cell expansion and activation. Some CoBS-treated animals did eventually develop GVHD, with both clinical and histopathologic evidence of smoldering disease. The reservoir of CoBS-resistant breakthrough immune activation included secretion of interferon-γ, IL-2, monocyte chemotactic protein-1, and IL-12/IL-23 and proliferation of cytotoxic T-lymphocyte-associated antigen 4 immunoglobulin-resistant CD28(-) CD8(+) T cells, suggesting adjuvant treatments targeting this subpopulation will be needed for full disease control.
American Journal of Transplantation | 2012
Karnail Singh; Natalia Kozyr; Linda Stempora; Allan D. Kirk; Christian P. Larsen; Bruce R. Blazar; Leslie S. Kean
Although regulatory T cells (Tregs) suppress allo‐immunity, difficulties in their large‐scale production and in maintaining their suppressive function after expansion have thus far limited their clinical applicability. Here we have used our nonhuman primate model to demonstrate that significant ex vivo Treg expansion with potent suppressive capacity can be achieved and that Treg suppressive capacity can be further enhanced by their exposure to a short pulse of sirolimus. Both unpulsed and sirolimus‐pulsed Tregs (SPTs) are capable of inhibiting proliferation of multiple T cell subpopulations, including CD4+ and CD8+ T cells, as well as antigen‐experienced CD28+CD95+ memory and CD28−CD95+ effector subpopulations. We further show that Tregs can be combined in vitro with CTLA4‐Ig (belatacept) to lead to enhanced inhibition of allo‐proliferation. SPTs undergo less proliferation in a mixed lymphocyte reaction (MLR) when compared with unpulsed Tregs, suggesting that Treg‐mediated suppression may be inversely related to their proliferative capacity. SPTs also display increased expression of CD25 and CTLA4, implicating signaling through these molecules in their enhanced function. Our results suggest that the creation of SPTs may provide a novel avenue to enhance Treg‐based suppression of allo‐immunity, in a manner amenable to large‐scale ex vivo expansion and combinatorial therapy with novel, costimulation blockade‐based immunosuppression strategies.
Journal of Immunology | 2011
Tamara L. Floyd; Brent H. Koehn; William H. Kitchens; Jennifer Robertson; Jennifer Cheeseman; Linda Stempora; Christian P. Larsen; Mandy L. Ford
Donor-reactive memory T cells (Tmem) can play an important role in mediating graft rejection after transplantation. Transplant recipients acquire donor-reactive Tmem not only through prior sensitization with alloantigens but also through previous exposure to environmental pathogens that are cross-reactive with allogeneic peptide–MHC complexes. Current dogma suggests that most, if not all, Tmem responses are independent of the requirement for CD28 and/or CD154/CD40-mediated costimulation to mount a recall response. However, heterogeneity among Tmem is increasingly being appreciated, and one important factor known to impact the function and phenotype of Ag-specific T cell responses is the amount/duration of Ag exposure. Importantly, the impact of Ag exposure on development of costimulation independence is currently unknown. In this study, we interrogated the effect of decreased Ag amount/duration during priming on the ability of donor-reactive Tmem to mediate costimulation blockade-resistant rejection during a recall response after transplantation in a murine model. Recipients possessing donor-reactive Tmem responses that were generated under conditions of reduced Ag exposure exhibited similar frequencies of Ag-specific T cells at day 30 postinfection, but, strikingly, failed to mediate costimulation blockade-resistant rejection after challenge with an OVA-expressing skin graft. Thus, these data demonstrate the amount/duration of Ag exposure is a critical factor in determining Tmem’s relative requirement for costimulation during the recall response after transplantation.