Lindsey Hanson
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lindsey Hanson.
Nature Nanotechnology | 2012
Chong Xie; Ziliang Lin; Lindsey Hanson; Yi Cui; Bianxiao Cui
Action potentials have a central role in the nervous system and in many cellular processes, notably those involving ion channels. The accurate measurement of action potentials requires efficient coupling between the cell membrane and the measuring electrodes. Intracellular recording methods such as patch clamping involve measuring the voltage or current across the cell membrane by accessing the cell interior with an electrode, allowing both the amplitude and shape of the action potentials to be recorded faithfully with high signal-to-noise ratios. However, the invasive nature of intracellular methods usually limits the recording time to a few hours, and their complexity makes it difficult to simultaneously record more than a few cells. Extracellular recording methods, such as multielectrode arrays and multitransistor arrays, are non-invasive and allow long-term and multiplexed measurements. However, extracellular recording sacrifices the one-to-one correspondence between the cells and electrodes, and also suffers from significantly reduced signal strength and quality. Extracellular techniques are not, therefore, able to record action potentials with the accuracy needed to explore the properties of ion channels. As a result, the pharmacological screening of ion-channel drugs is usually performed by low-throughput intracellular recording methods. The use of nanowire transistors, nanotube-coupled transistors and micro gold-spine and related electrodes can significantly improve the signal strength of recorded action potentials. Here, we show that vertical nanopillar electrodes can record both the extracellular and intracellular action potentials of cultured cardiomyocytes over a long period of time with excellent signal strength and quality. Moreover, it is possible to repeatedly switch between extracellular and intracellular recording by nanoscale electroporation and resealing processes. Furthermore, vertical nanopillar electrodes can detect subtle changes in action potentials induced by drugs that target ion channels.
Nano Letters | 2010
Chong Xie; Lindsey Hanson; Wenjun Xie; Ziliang Carter Lin; Bianxiao Cui; Yi Cui
Cell migration in a cultured neuronal network presents an obstacle to selectively measuring the activity of the same neuron over a long period of time. Here we report the use of nanopillar arrays to pin the position of neurons in a noninvasive manner. Vertical nanopillars protruding from the surface serve as geometrically better focal adhesion points for cell attachment than a flat surface. The cell body mobility is significantly reduced from 57.8 μm on a flat surface to 3.9 μm on nanopillars over a 5 day period. Yet, neurons growing on nanopillar arrays show a growth pattern that does not differ in any significant way from that seen on a flat substrate. Notably, while the cell bodies of neurons are efficiently anchored by the nanopillars, the axons and dendrites are free to grow and elongate into the surrounding area to develop a neuronal network, which opens up opportunities for long-term study of the same neurons in connected networks.
Nano Letters | 2012
Lindsey Hanson; Ziliang Carter Lin; Chong Xie; Yi Cui; Bianxiao Cui
Vertically aligned nanopillars can serve as excellent electrical, optical and mechanical platforms for biological studies. However, revealing the nature of the interface between the cell and the nanopillar is very challenging. In particular, a matter of debate is whether the cell membrane remains intact around the nanopillar. Here we present a detailed characterization of the cell-nanopillar interface by transmission electron microscopy. We examined cortical neurons growing on nanopillars with diameter 50-500 nm and heights 0.5-2 μm. We found that on nanopillars less than 300 nm in diameter, the cell membrane wraps around the entirety of the nanopillar without the nanopillar penetrating into the interior of the cell. On the other hand, the cell sits on top of arrays of larger, closely spaced nanopillars. We also observed that the membrane-surface gap of both cell bodies and neurites is smaller for nanopillars than for a flat substrate. These results support a tight interaction between the cell membrane and the nanopillars and previous findings of excellent sealing in electrophysiology recordings using nanopillar electrodes.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Chong Xie; Lindsey Hanson; Yi Cui; Bianxiao Cui
Observing individual molecules in a complex environment by fluorescence microscopy is becoming increasingly important in biological and medical research, for which critical reduction of observation volume is required. Here, we demonstrate the use of vertically aligned silicon dioxide nanopillars to achieve below-the-diffraction-limit observation volume in vitro and inside live cells. With a diameter much smaller than the wavelength of visible light, a transparent silicon dioxide nanopillar embedded in a nontransparent substrate restricts the propagation of light and affords evanescence wave excitation along its vertical surface. This effect creates highly confined illumination volume that selectively excites fluorescence molecules in the vicinity of the nanopillar. We show that this nanopillar illumination can be used for in vitro single-molecule detection at high fluorophore concentrations. In addition, we demonstrate that vertical nanopillars interface tightly with live cells and function as highly localized light sources inside the cell. Furthermore, specific chemical modification of the nanopillar surface makes it possible to locally recruit proteins of interest and simultaneously observe their behavior within the complex, crowded environment of the cell.
Nature Nanotechnology | 2015
Lindsey Hanson; Wenting Zhao; Hsin-Ya Lou; Ziliang Carter Lin; Seok-Woo Lee; Praveen D. Chowdary; Yi Cui; Bianxiao Cui
The mechanical stability and deformability of the cell nucleus are crucial to many biological processes, including migration, proliferation and polarization. In vivo, the cell nucleus is frequently subjected to deformation on a variety of length and time scales, but current techniques for studying nuclear mechanics do not provide access to subnuclear deformation in live functioning cells. Here we introduce arrays of vertical nanopillars as a new method for the in situ study of nuclear deformability and the mechanical coupling between the cell membrane and the nucleus in live cells. Our measurements show that nanopillar-induced nuclear deformation is determined by nuclear stiffness, as well as opposing effects from actin and intermediate filaments. Furthermore, the depth, width and curvature of nuclear deformation can be controlled by varying the geometry of the nanopillar array. Overall, vertical nanopillar arrays constitute a novel approach for non-invasive, subcellular perturbation of nuclear mechanics and mechanotransduction in live cells.
Nature Nanotechnology | 2017
Wenting Zhao; Lindsey Hanson; Hsin-Ya Lou; Matthew Akamatsu; Praveen D. Chowdary; Francesca Santoro; Jessica R. Marks; Alexandre Grassart; David G. Drubin; Yi Cui; Bianxiao Cui
Clathrin-mediated endocytosis (CME) involves nanoscale bending and inward budding of the plasma membrane, by which cells regulate both the distribution of membrane proteins and the entry of extracellular species. Extensive studies have shown that CME proteins actively modulate the plasma membrane curvature. However, the reciprocal regulation of how the plasma membrane curvature affects the activities of endocytic proteins is much less explored, despite studies suggesting that membrane curvature itself can trigger biochemical reactions. This gap in our understanding is largely due to technical challenges in precisely controlling the membrane curvature in live cells. In this work, we use patterned nanostructures to generate well-defined membrane curvatures ranging from +50 nm to -500 nm radius of curvature. We find that the positively curved membranes are CME hotspots, and that key CME proteins, clathrin and dynamin, show a strong preference towards positive membrane curvatures with a radius <200 nm. Of ten CME-related proteins we examined, all show preferences for positively curved membrane. In contrast, other membrane-associated proteins and non-CME endocytic protein caveolin1 show no such curvature preference. Therefore, nanostructured substrates constitute a novel tool for investigating curvature-dependent processes in live cells.
Microscopy Research and Technique | 2011
Lindsey Hanson; Lifeng Cui; Chong Xie; Bianxiao Cui
We report a microfluidic positioning chamber (MPC) that can rapidly and repeatedly relocate the same imaging area on a microscope stage. The “roof” of the microfluidic chamber was printed with serials of coordinate numbers that act as positioning marks for mammalian cells that grow attached to the “floor” of the microfluidic chamber. MPC cell culture chamber provided a simple solution for tracking the same cell or groups of cells over days or weeks. The positioning marks were used to register time‐lapse images of the same imaging area to single‐pixel accuracy. Using MPC cell culture chamber, we tracked the migration, division, and differentiation of individual PC12 cells for over a week using bright field and fluorescence imaging. Microsc. Res. Tech., 2010.
Langmuir | 2017
Hsin-Ya Lou; Wenting Zhao; Lindsey Hanson; Connie Zeng; Yi Cui; Bianxiao Cui
Clinical studies of circulating tumor cells (CTC) have stringent demands for high capture purity and high capture efficiency. Nanostructured surfaces have been shown to significantly increase the capture efficiency yet suffer from low capture purity. Here we introduce a dual-functional lipid coating on nanostructured surfaces. The lipid coating serves both as an effective passivation layer that helps prevent nonspecific cell adhesion and as a functionalized layer for antibody-based specific cell capture. In addition, the fluidity of lipid bilayers enables antibody clustering that enhances the cell-surface interaction for efficient cell capture. As a result, the lipid-coating method helps promote both the capture efficiency and capture purity of nanostructure-based CTC capture.
Biophysical Journal | 2011
Lindsey Hanson; Chong Xie; Xiliang Lin; Yi Cui; Bianxiao Cui
With unique properties and access to length scales pertinent to biological activities, nanoscale structures and materials stand to make significant contributions to the investigation of cell processes. We investigated cellular interactions with vertically-aligned nanopillars of several materials, and the interface between the cells and said vertical nanopillars. Cells exhibit significantly decreased motility across a nanopillar surface as compared with a flat surface, with average movements over a five day period decreased from 57.8um to 3.0um. Additionally, scanning and transmission electron microscopy analyses show tight seals of around 10 nanometers between the cell membrane and nanopillars, in contrast with the tent-like gaps of 100nm-1um typical between cells and flat surfaces. Not only do cells fail to migrate away from nanopillar surfaces, we have also shown that the nanopillars serve to encourage attachment by cell outgrowths and stimulate the axon growth cone in neurons. As such, patterns of nanopillars serve as effective axon-guiding instruments, and can form the basis of templates for the long-term study of neural networks.
Chemical Communications | 2012
Yasuko Osakada; Lindsey Hanson; Bianxiao Cui