Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linfeng Yang is active.

Publication


Featured researches published by Linfeng Yang.


Nature Communications | 2014

The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes

Shengyi Liu; Xinhua Yang; Chaobo Tong; David Edwards; Isobel A. P. Parkin; Meixia Zhao; Jianxin Ma; Jingyin Yu; Shunmou Huang; Xiyin Wang; Wang J; Kun Lu; Zhiyuan Fang; Ian Bancroft; Tae-Jin Yang; Qiong Hu; Xinfa Wang; Zhen Yue; Haojie Li; Linfeng Yang; Jian Wu; Qing Zhou; Wanxin Wang; Graham J. King; J. Chris Pires; Changxin Lu; Zhangyan Wu; Perumal Sampath; Zhuo Wang; Hui Guo

Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B. oleracea. This study provides insights into Brassica genome evolution and will underpin research into the many important crops in this genus.


Nature Genetics | 2012

Whole-genome sequence of Schistosoma haematobium

Neil D. Young; Aaron R. Jex; Bo Li; Shiping Liu; Linfeng Yang; Zijun Xiong; Yingrui Li; Cinzia Cantacessi; Ross S. Hall; Xun Xu; Fangyuan Chen; Xuan Wu; Adhemar Zerlotini; Guilherme Oliveira; Andreas Hofmann; Guojie Zhang; Xiaodong Fang; Yi Kang; Bronwyn E. Campbell; Alex Loukas; Shoba Ranganathan; David Rollinson; Gabriel Rinaldi; Paul J. Brindley; Huanming Yang; Jun Wang; Jian Wang; Robin B. Gasser

Schistosomiasis is a neglected tropical disease caused by blood flukes (genus Schistosoma; schistosomes) and affecting 200 million people worldwide. No vaccines are available, and treatment relies on one drug, praziquantel. Schistosoma haematobium has come into the spotlight as a major cause of urogenital disease, as an agent linked to bladder cancer and as a predisposing factor for HIV/AIDS. The parasite is transmitted to humans from freshwater snails. Worms dwell in blood vessels and release eggs that become embedded in the bladder wall to elicit chronic immune-mediated disease and induce squamous cell carcinoma. Here we sequenced the 385-Mb genome of S. haematobium using Illumina-based technology at 74-fold coverage and compared it to sequences from related parasites. We included genome annotation based on function, gene ontology, networking and pathway mapping. This genome now provides an unprecedented resource for many fundamental research areas and shows great promise for the design of new disease interventions.


Nature | 2011

Ascaris suum draft genome

Aaron R. Jex; Shiping Liu; Bo Li; Neil D. Young; Ross S. Hall; Yingrui Li; Linfeng Yang; Na Zeng; Xun Xu; Zijun Xiong; Fangyuan Chen; Xuan Wu; Guojie Zhang; Xiaodong Fang; Yi Kang; Garry A. Anderson; Todd W. Harris; Bronwyn E. Campbell; Johnny Vlaminck; Tao Wang; Cinzia Cantacessi; Erich M. Schwarz; Shoba Ranganathan; Peter Geldhof; Peter Nejsum; Paul W. Sternberg; Huanming Yang; Jun Wang; Jian Wang; Robin B. Gasser

Parasitic diseases have a devastating, long-term impact on human health, welfare and food production worldwide. More than two billion people are infected with geohelminths, including the roundworms Ascaris (common roundworm), Necator and Ancylostoma (hookworms), and Trichuris (whipworm), mainly in developing or impoverished nations of Asia, Africa and Latin America. In humans, the diseases caused by these parasites result in about 135,000 deaths annually, with a global burden comparable with that of malaria or tuberculosis in disability-adjusted life years. Ascaris alone infects around 1.2 billion people and, in children, causes nutritional deficiency, impaired physical and cognitive development and, in severe cases, death. Ascaris also causes major production losses in pigs owing to reduced growth, failure to thrive and mortality. The Ascaris–swine model makes it possible to study the parasite, its relationship with the host, and ascariasis at the molecular level. To enable such molecular studies, we report the 273 megabase draft genome of Ascaris suum and compare it with other nematode genomes. This genome has low repeat content (4.4%) and encodes about 18,500 protein-coding genes. Notably, the A. suum secretome (about 750 molecules) is rich in peptidases linked to the penetration and degradation of host tissues, and an assemblage of molecules likely to modulate or evade host immune responses. This genome provides a comprehensive resource to the scientific community and underpins the development of new and urgently needed interventions (drugs, vaccines and diagnostic tests) against ascariasis and other nematodiases.


Plant Journal | 2012

The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads

Zhiwen Wang; Neil Hobson; Leonardo Galindo; Shilin Zhu; Daihu Shi; Joshua McDill; Linfeng Yang; Simon Hawkins; Godfrey Neutelings; Raju Datla; Georgina M. Lambert; David W. Galbraith; Christopher J. Grassa; Armando Geraldes; Quentin C. B. Cronk; Christopher A. Cullis; Prasanta K. Dash; Polumetla Ananda Kumar; Sylvie Cloutier; Andrew G. Sharpe; Gane Ka-Shu Wong; Jun Wang; Michael K. Deyholos

Flax (Linum usitatissimum) is an ancient crop that is widely cultivated as a source of fiber, oil and medicinally relevant compounds. To accelerate crop improvement, we performed whole-genome shotgun sequencing of the nuclear genome of flax. Seven paired-end libraries ranging in size from 300 bp to 10 kb were sequenced using an Illumina genome analyzer. A de novo assembly, comprised exclusively of deep-coverage (approximately 94× raw, approximately 69× filtered) short-sequence reads (44-100 bp), produced a set of scaffolds with N(50) =694 kb, including contigs with N(50)=20.1 kb. The contig assembly contained 302 Mb of non-redundant sequence representing an estimated 81% genome coverage. Up to 96% of published flax ESTs aligned to the whole-genome shotgun scaffolds. However, comparisons with independently sequenced BACs and fosmids showed some mis-assembly of regions at the genome scale. A total of 43384 protein-coding genes were predicted in the whole-genome shotgun assembly, and up to 93% of published flax ESTs, and 86% of A. thaliana genes aligned to these predicted genes, indicating excellent coverage and accuracy at the gene level. Analysis of the synonymous substitution rates (K(s) ) observed within duplicate gene pairs was consistent with a recent (5-9 MYA) whole-genome duplication in flax. Within the predicted proteome, we observed enrichment of many conserved domains (Pfam-A) that may contribute to the unique properties of this crop, including agglutinin proteins. Together these results show that de novo assembly, based solely on whole-genome shotgun short-sequence reads, is an efficient means of obtaining nearly complete genome sequence information for some plant species.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Insights into salt tolerance from the genome of Thellungiella salsuginea.

Hua-Jun Wu; Zhonghui Zhang; Wang J; Dong-Ha Oh; Maheshi Dassanayake; Binghang Liu; Quanfei Huang; Hai-Xi Sun; Ran Xia; Yaorong Wu; Yi-Nan Wang; Zhao Yang; Yang Liu; Wan-Ke Zhang; Huawei Zhang; Jinfang Chu; Cunyu Yan; Shuang Fang; Zhang J; Yiqin Wang; Fengxia Zhang; Guodong Wang; Sang Yeol Lee; John M. Cheeseman; Bicheng Yang; Bo Li; Jiumeng Min; Linfeng Yang; Jun Wang; Chengcai Chu

Thellungiella salsuginea, a close relative of Arabidopsis, represents an extremophile model for abiotic stress tolerance studies. We present the draft sequence of the T. salsuginea genome, assembled based on ∼134-fold coverage to seven chromosomes with a coding capacity of at least 28,457 genes. This genome provides resources and evidence about the nature of defense mechanisms constituting the genetic basis underlying plant abiotic stress tolerance. Comparative genomics and experimental analyses identified genes related to cation transport, abscisic acid signaling, and wax production prominent in T. salsuginea as possible contributors to its success in stressful environments.


Nature Communications | 2013

The Tiger Genome and Comparative Analysis with Lion and Snow Leopard Genomes

Yun Sung Cho; Li Hu; Haolong Hou; Hang Lee; Jiaohui Xu; Soowhan Kwon; Sukhun Oh; Hak-Min Kim; Sungwoong Jho; Sangsoo Kim; Young-Ah Shin; Byung Chul Kim; Hyun-Min Kim; Chang-uk Kim; Shu-Jin Luo; Warren E. Johnson; Klaus-Peter Koepfli; Anne Schmidt-Küntzel; Jason A. Turner; Laurie Marker; Cindy Kim Harper; Susan M. Miller; Wilhelm Jacobs; Laura D. Bertola; Tae Hyung Kim; Sunghoon Lee; Qian Zhou; Hyun-Ju Jung; Xiao Xu; Priyvrat Gadhvi

Tigers and their close relatives (Panthera) are some of the world’s most endangered species. Here we report the de novo assembly of an Amur tiger whole-genome sequence as well as the genomic sequences of a white Bengal tiger, African lion, white African lion and snow leopard. Through comparative genetic analyses of these genomes, we find genetic signatures that may reflect molecular adaptations consistent with the big cats’ hypercarnivorous diet and muscle strength. We report a snow leopard-specific genetic determinant in EGLN1 (Met39>Lys39), which is likely to be associated with adaptation to high altitude. We also detect a TYR260G>A mutation likely responsible for the white lion coat colour. Tiger and cat genomes show similar repeat composition and an appreciably conserved synteny. Genomic data from the five big cats provide an invaluable resource for resolving easily identifiable phenotypes evident in very close, but distinct, species.


Nature Communications | 2014

Camelid genomes reveal evolution and adaptation to desert environments

Huiguang Wu; Xuanmin Guang; Mohamed B. Al-Fageeh; Junwei Cao; Shengkai Pan; Huanmin Zhou; Li Zhang; Mohammed H. Abutarboush; Yanping Xing; Zhiyuan Xie; Ali S. Alshanqeeti; Yanru Zhang; Qiulin Yao; Badr M. Al-Shomrani; Dong Zhang; Jiang Li; Manee M. Manee; Zili Yang; Linfeng Yang; Yiyi Liu; Jilin Zhang; Musaad A. Altammami; Shenyuan Wang; Lili Yu; Wenbin Zhang; Sanyang Liu; La Ba; Chunxia Liu; Xukui Yang; Fanhua Meng

Bactrian camel (Camelus bactrianus), dromedary (Camelus dromedarius) and alpaca (Vicugna pacos) are economically important livestock. Although the Bactrian camel and dromedary are large, typically arid-desert-adapted mammals, alpacas are adapted to plateaus. Here we present high-quality genome sequences of these three species. Our analysis reveals the demographic history of these species since the Tortonian Stage of the Miocene and uncovers a striking correlation between large fluctuations in population size and geological time boundaries. Comparative genomic analysis reveals complex features related to desert adaptations, including fat and water metabolism, stress responses to heat, aridity, intense ultraviolet radiation and choking dust. Transcriptomic analysis of Bactrian camels further reveals unique osmoregulation, osmoprotection and compensatory mechanisms for water reservation underpinned by high blood glucose levels. We hypothesize that these physiological mechanisms represent kidney evolutionary adaptations to the desert environment. This study advances our understanding of camelid evolution and the adaptation of camels to arid-desert environments.


Nature Communications | 2015

Gekko japonicus genome reveals evolution of adhesive toe pads and tail regeneration

Yan Liu; Qian Zhou; Yongjun Wang; Longhai Luo; Jian Yang; Linfeng Yang; Mei Liu; Yingrui Li; Tianmei Qian; Yuan Zheng; Meiyuan Li; Jiang Li; Yun Gu; Zujing Han; Man Xu; Yingjie Wang; Changlai Zhu; Bin Yu; Yumin Yang; Fei Ding; Jianping Jiang; Huanming Yang; Xiaosong Gu

Reptiles are the most morphologically and physiologically diverse tetrapods, and have undergone 300 million years of adaptive evolution. Within the reptilian tetrapods, geckos possess several interesting features, including the ability to regenerate autotomized tails and to climb on smooth surfaces. Here we sequence the genome of Gekko japonicus (Schlegels Japanese Gecko) and investigate genetic elements related to its physiology. We obtain a draft G. japonicus genome sequence of 2.55 Gb and annotated 22,487 genes. Comparative genomic analysis reveals specific gene family expansions or reductions that are associated with the formation of adhesive setae, nocturnal vision and tail regeneration, as well as the diversification of olfactory sensation. The obtained genomic data provide robust genetic evidence of adaptive evolution in reptiles.


GigaScience | 2014

Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment.

Cai Li; Yong Zhang; Jianwen Li; Lesheng Kong; Haofu Hu; Hailin Pan; Luohao Xu; Yuan Deng; Qiye Li; Lijun Jin; Hao Yu; Yan Chen; Binghang Liu; Linfeng Yang; Shiping Liu; Zhang Y; Yongshan Lang; Jinquan Xia; Weiming He; Qiong Shi; Sankar Subramanian; Craig D. Millar; Stephen Meader; Chris M. Rands; Matthew K. Fujita; Matthew J. Greenwold; Todd A. Castoe; David D. Pollock; Wanjun Gu; Ki Woong Nam

BackgroundPenguins are flightless aquatic birds widely distributed in the Southern Hemisphere. The distinctive morphological and physiological features of penguins allow them to live an aquatic life, and some of them have successfully adapted to the hostile environments in Antarctica. To study the phylogenetic and population history of penguins and the molecular basis of their adaptations to Antarctica, we sequenced the genomes of the two Antarctic dwelling penguin species, the Adélie penguin [Pygoscelis adeliae] and emperor penguin [Aptenodytes forsteri].ResultsPhylogenetic dating suggests that early penguins arose ~60 million years ago, coinciding with a period of global warming. Analysis of effective population sizes reveals that the two penguin species experienced population expansions from ~1 million years ago to ~100 thousand years ago, but responded differently to the climatic cooling of the last glacial period. Comparative genomic analyses with other available avian genomes identified molecular changes in genes related to epidermal structure, phototransduction, lipid metabolism, and forelimb morphology.ConclusionsOur sequencing and initial analyses of the first two penguin genomes provide insights into the timing of penguin origin, fluctuations in effective population sizes of the two penguin species over the past 10 million years, and the potential associations between these biological patterns and global climate change. The molecular changes compared with other avian genomes reflect both shared and diverse adaptations of the two penguin species to the Antarctic environment.


The Plant Genome | 2016

Identification and Validation of Candidate Genes Associated with Domesticated and Improved Traits in Soybean

Ling Zhou; Longhai Luo; Jian-Fang Zuo; Linfeng Yang; Li Zhang; Xuanmin Guang; Yuan Niu; Jianbo Jian; Qing-Chun Geng; Liping Liang; Qijian Song; Jim M. Dunwell; Zhenzhen Wu; Jia Wen; Yu-Qin Liu; Yuan-Ming Zhang

Soybean, an important source of vegetable oils and proteins for humans, has undergone significant phenotypic changes during domestication and improvement. However, there is limited knowledge about genes related to these domesticated and improved traits, such as flowering time, seed development, alkaline‐salt tolerance, and seed oil content (SOC). In this study, more than 106,000 single nucleotide polymorphisms (SNPs) were identified by restriction site associated DNA sequencing of 14 wild, 153 landrace, and 119 bred soybean accessions, and 198 candidate domestication regions (CDRs) were identified via multiple genetic diversity analyses. Of the 1489 candidate domestication genes (CDGs) within these CDRs, a total of 330 CDGs were related to the above four traits in the domestication, gene ontology (GO) enrichment, gene expression, and pathway analyses. Eighteen, 60, 66, and 10 of the 330 CDGs were significantly associated with the above four traits, respectively. Of 134 trait‐associated CDGs, 29 overlapped with previous CDGs, 11 were consistent with candidate genes in previous trait association studies, and 66 were covered by the domesticated and improved quantitative trait loci or their adjacent regions, having six common CDGs, such as one functionally characterized gene Glyma15 g17480 (GmZTL3). Of the 68 seed size (SS) and SOC CDGs, 37 were further confirmed by gene expression analysis. In addition, eight genes were found to be related to artificial selection during modern breeding. Therefore, this study provides an integrated method for efficiently identifying CDGs and valuable information for domestication and genetic research.

Collaboration


Dive into the Linfeng Yang's collaboration.

Top Co-Authors

Avatar

Jun Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bo Li

University of California

View shared research outputs
Top Co-Authors

Avatar

Huanming Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Li Zhang

Inner Mongolia Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shiping Liu

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar

Xiaodong Fang

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Yingrui Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guojie Zhang

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Wenbin Zhang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Chunxia Liu

Inner Mongolia Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge