Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ling-Jun Zhao is active.

Publication


Featured researches published by Ling-Jun Zhao.


Molecular and Cellular Biology | 2008

Role of the PLDLS-Binding Cleft Region of CtBP1 in Recruitment of Core and Auxiliary Components of the Corepressor Complex

Mohan Kuppuswamy; S. Vijayalingam; Ling-Jun Zhao; Yun Zhou; T. Subramanian; Jan Ryerse; G. Chinnadurai

ABSTRACT C-terminal binding protein (CtBP) family proteins CtBP1 and CtBP2 are highly homologous transcriptional corepressors and are recruited by a large number of transcription factors to mediate sequence-specific transcriptional repression. In addition to DNA-binding repressors, the nuclear protein complex of CtBP1 consists of enzymatic constituents such as histone deacetylases (HDAC1/2), histone methyl transferases (HMTases; G9a and GLP), and the lysine-specific demethylase (LSD1). Additionally, CtBPs also recruit the components of the sumoylation machinery. The CtBPs contain two different unique structural elements, a hydrophobic cleft, with which factors that contain motifs related to the E1A PLDLS motif bind, and a surface groove that binds with factors containing motifs related to the sequence RRTGXPPXL (RRT motif). By structure-based functional dissection of CtBP1, we show that the PLDLS-binding cleft region functions as the primary recruitment center for DNA-binding factors and for the core and auxiliary enzymatic constituents of the CtBP1 corepressor complex. We identify HDAC1/2, CoREST/LSD1, and Ubc9 (E2) as the core constituents of the CtBP1 complex, and these components interact with the PLDLS cleft region through non-PLDLS interactions. Among the CtBP core constituents, HDACs contribute predominantly to the repression activity of CtBP1. The auxiliary components include an HMTase complex (G9a/Wiz/CDYL) and two SUMO E3 ligases, HPC2 and PIAS1. The interaction of auxiliary components with CtBP1 is excluded by PLDLS (E1A)-mediated interactions. Although monomeric CtBP1 is proficient in the recruiting of both core and auxiliary components, NAD(H)-dependent dimerization is required for transcriptional repression. We also provide evidence that CtBP1 functions as a platform for sumoylation of cofactors.


Journal of Virology | 2008

Interferon Regulatory Factor 4 Is Involved in Epstein-Barr Virus-Mediated Transformation of Human B Lymphocytes

Dongsheng Xu; Ling-Jun Zhao; Luis Del Valle; Judith Miklossy; Luwen Zhang

ABSTRACT Epstein-Barr virus (EBV) infection is associated with many human malignancies. In vitro, EBV transforms primary B lymphocytes into continuously growing lymphoblastoid cell lines. EBV latent membrane protein 1 (LMP-1) is required for EBV transformation processes. Interferon regulatory factor 4 (IRF-4) is a transcription factor and has oncogenic potential. We find that high levels of IRF-4 are associated with EBV transformation of human primary B cells in vitro and with EBV type III latency in which LMP-1 is expressed. We show that EBV LMP-1 stimulates IRF-4 expression in B lymphocytes. The stimulation of IRF-4 by LMP-1 requires signaling from LMP-1 and involves cellular NF-κB. The growth of EBV-transformed cells is inhibited when IRF-4 is specifically down-regulated. We further demonstrate that IRF-4 knockdown cells have lower proliferation but higher apoptotic rates than control cells. Finally, IRF-4 is expressed in significant numbers of specimens of primary central nervous system (CNS) lymphomas (12/27 [44.4%]), an EBV-associated malignancy. The association between the expression levels of LMP-1 and IRF-4 is statistically significant (P = 0.011) in these CNS lymphomas. Our data suggest that IRF-4 may be a critical factor in EBV transformation and a useful target in the therapy of EBV-mediated neoplasia.


Journal of Virology | 2007

Epstein-Barr Virus Inhibits Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication in Primary Effusion Lymphomas

Dongsheng Xu; Tricia Coleman; Jun Zhang; Ashley Fagot; Catherine Kotalik; Ling-Jun Zhao; Pankaj Trivedi; Clinton Jones; Luwen Zhang

ABSTRACT The majority of AIDS-associated primary effusion lymphomas (PEL) are latently infected with both Kaposis sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV). PELs harboring two viruses have higher oncogenic potential, suggesting functional interactions between EBV and KSHV. The KSHV replication and transcription activator (K-RTA) is necessary and sufficient for induction of KSHV lytic replication. EBV latent membrane protein 1 (LMP-1) is essential for EBV transformation and establishment of latency in vitro. We show EBV inhibits chemically induced KSHV lytic replication, in part because of a regulatory loop in which K-RTA induces EBV LMP-1 and LMP-1 in turn inhibits K-RTA expression and furthermore the lytic gene expression of KSHV. Suppression of LMP-1 expression in dually infected PEL cells enhances the expression of K-RTA and lytic replication of KSHV upon chemical induction. Because LMP-1 is known to inhibit EBV lytic replication, KSHV-mediated induction of LMP-1 would potentiate EBV latency. Moreover, KSHV infection of EBV latency cells induces LMP-1, and K-RTA is involved in the induction. Both LMP-1 and K-RTA are expressed during primary infection by EBV of KSHV latency cells. Our findings provide evidence that an interaction between EBV and KSHV at molecular levels promotes the maintenance and possibly establishment of viral latency, which may contribute to pathogenesis of PELs.


Journal of Virology | 2010

Adenovirus type 5 E1A and E6 proteins of low-risk cutaneous beta-human papillomaviruses suppress cell transformation through interaction with FOXK1/K2 transcription factors.

Jessica Komorek; Mohan Kuppuswamy; T. Subramanian; S. Vijayalingam; Elena Lomonosova; Ling-Jun Zhao; Joe S. Mymryk; Kimberly P. Schmitt; G. Chinnadurai

ABSTRACT The adenovirus (Adv) oncoprotein E1A stimulates cell proliferation and inhibits differentiation. These activities are primarily linked to the N-terminal region (exon 1) of E1A, which interacts with multiple cellular protein complexes. The C terminus (exon 2) of E1A antagonizes these processes, mediated in part through interaction with C-terminal binding proteins 1 and 2 (CtBP1/2). To identify additional cellular E1A targets that are involved in the modulation of E1A C-terminus-mediated activities, we undertook tandem affinity purification of E1A-associated proteins. Through mass spectrometric analysis, we identified several known E1A-interacting proteins as well as novel E1A targets, such as the forkhead transcription factors, FOXK1/K2. We identified a Ser/Thr-containing sequence motif in E1A that mediated interaction with FOXK1/K2. We demonstrated that the E6 proteins of two beta-human papillomaviruses (HPV14 and HPV21) associated with epidermodysplasia verruciformis also interacted with FOXK1/K2 through a motif similar to that of E1A. The E1A mutants deficient in interaction with FOXK1/K2 induced enhanced cell proliferation and oncogenic transformation. The hypertransforming activity of the mutant E1A was suppressed by HPV21 E6. An E1A-E6 chimeric protein containing the Ser/Thr domain of the E6 protein in E1A interacted efficiently with FOXK1/K2 and inhibited cell transformation. Our results suggest that targeting FOXK1/K2 may be a common mechanism for certain beta-HPVs and Adv5. E1A exon 2 mutants deficient in interaction with the dual-specificity kinases DYRK1A/1B and their cofactor HAN11 also induced increased cell proliferation and transformation. Our results suggest that the E1A C-terminal region may suppress cell proliferation and oncogenic transformation through interaction with three different cellular protein complexes: FOXK1/K2, DYRK(1A/1B)/HAN11, and CtBP1/2.


Journal of Virology | 2007

Evidence for Involvement of BH3-Only Proapoptotic Members in Adenovirus-Induced Apoptosis

T. Subramanian; S. Vijayalingam; Elena Lomonosova; Ling-Jun Zhao; G. Chinnadurai

ABSTRACT Mammalian cells infected with human adenoviruses (Ads) undergo an apoptotic response as a result of expression of the viral E1A proteins, and this process is suppressed by the viral E1B-19K protein. The intermediary steps in the Ad-induced apoptosis pathway are not fully resolved. The apical step in the canonical mammalian apoptosis pathway involves functional activation of one or more of the BH3-only BCL-2 family proapoptotic proteins. Previous reports have suggested that Ad-induced apoptosis may be initiated at checkpoints downstream of the BH3-only proteins. Here, we undertook genetic and biochemical studies to determine the roles of BH3-only proteins in Ad-induced apoptosis. We examined the activities of the cellular antiapoptosis protein BCL-xL and its mutants expressed from the E1B region of the Ad5 genome. Our results showed efficient suppression of Ad-induced apoptosis by a BCL-xL mutant (mt1) deficient in interaction with multidomain proapoptotic proteins BAX and BAK but proficient in interaction with BH3-only proteins, suggesting a role for BH3-only proteins in the initiation of Ad-induced apoptosis. Further, the antiapoptotic activity of BCL-xL mt1 in Ad-infected cells was observed in spite of BAK activation as a consequence of MCL-1 degradation. Analysis of the mRNA levels of various BH3-only members by reverse transcription-PCR revealed prominent activation of the Bik gene. Further, the BIK protein was also modified into an apoptotically enhanced phosphorylated form during the viral infection. In addition to BIK, enhanced level of BIM was observed in Ad-infected cells. Between the two major E1A proteins coded by the 12S and 13S mRNAs, the 13S product appeared to contribute to the activation of these BH3-only members and apoptosis during viral infection. Depletion of BIK by the use of small interfering RNA reduced the level of Ad-induced apoptosis. Our results are consistent with a model that activation of the BH3-only members may initiate Ad-induced apoptosis.


BMC Molecular Biology | 2009

Interaction of ZEB and Histone Deacetylase with the PLDLS-binding cleft region of monomeric C-terminal Binding Protein 2

Ling-Jun Zhao; Mohan Kuppuswamy; S. Vijayalingam; G. Chinnadurai

BackgroundProteins of the C-terminal binding protein (CtBP) family, CtBP1 and CtBP2 are closely related transcriptional regulators that are coded by two different gene loci in the vertebrate genomes. They perform redundant and unique functions during animal development. CtBP proteins mediate their transcriptional function through interaction with various DNA-binding repressors that contain PLDLS-like motifs and chromatin modifying enzymes, such as class I histone deacetylases (HDAC) that do not contain such motifs. The N-terminal region of CtBP1/2 forms a hydrophobic cleft and is involved in interaction with both PLDLS-containing factors and non-PLDLS factors. CtBP proteins function as dimers to mediate transcriptional repression and dimerization is modulated by specific binding to NAD/NADH.ResultsIn this study, we have investigated the role of dimerization of CtBP2 in recruitment of PLDLS-motif cofactors and non-PLDLS cofactors. Our results indicate that mutations in CtBP2 that interfere with dimerization abolish CtBP2 interaction with most cellular factors, except the PLDLS-motif factor zinc-finger E-box binding homeobox (ZEB) and the non-PLDLS factor HDAC2. Unlike most PLDLS-containing CtBP-binding proteins, ZEB contains three PLDLS-like motifs and all three contribute to the interaction with the CtBP2 monomer. Despite the ability to interact with ZEB and HDAC, the CtBP2 monomer fails to mediate ZEB-dependent transcriptional repression. The lack of repression activity of the CtBP2 monomer is correlated with the competition between ZEB and HDAC for interaction with the CtBP2 monomer.ConclusionThese results suggest a competition between the canonical PLDLS-motif factors such as E1A and non-PLDLS factor HDAC for interaction with CtBP. They also indicate that the affinity for the CtBP monomer may be determined by the number as well as amino acid sequence compositions of the PLDLS-like motifs. Our results are consistent with a model that the CtBP2 dimer may interact with a PLDLS-containing repressor through one monomer and recruit HDAC and other chromatin modifying enzymes through the second monomer in the CtBP2 dimer.


Virology | 2016

Ad E1A 243R oncoprotein promotes association of proto-oncogene product MYC with the NuA4/Tip60 complex via the E1A N-terminal repression domain.

Ling-Jun Zhao; Paul M. Loewenstein; Maurice Green

The adenovirus E1A 243R oncoprotein targets TRRAP, a scaffold protein that assembles histone acetyltransferase (HAT) complexes, such as the NuA4/Tip60 complex which mediates transcriptional activity of the proto-oncogene MYC and helps determine the cancer cell phenotype. How E1A transforms cells through TRRAP remains obscure. We performed proteomic analysis with the N-terminal transcriptional repression domain of E1A 243R (E1A 1-80) and showed that E1A 1-80 interacts with TRRAP, p400, and three other members of the NuA4 complex - DMAP1, RUVBL1 and RUVBL2 - not previously shown to associate with E1A 243R. E1A 1-80 interacts with these NuA4 components and MYC through the E1A TRRAP-targeting domain. E1A 243R association with the NuA4 complex was demonstrated by co-immunoprecipitation and analysis with DMAP1, Tip60, and MYC. Significantly, E1A 243R promotes association of MYC/MAX with the NuA4/Tip60 complex, implicating the importance of the MYC/NuA4 pathway in cellular transformation by both MYC and E1A.


Virology | 2013

Interaction of CtBP with adenovirus E1A suppresses immortalization of primary epithelial cells and enhances virus replication during productive infection

T. Subramanian; Ling-Jun Zhao; G. Chinnadurai

Adenovirus E1A induces cell proliferation, oncogenic transformation and promotes viral replication through interaction with p300/CBP, TRRAP/p400 multi-protein complex and the retinoblastoma (pRb) family proteins through distinct domains in the E1A N-terminal region. The C-terminal region of E1A suppresses E1A/Ras co-transformation and interacts with FOXK1/K2, DYRK1A/1B/HAN11 and CtBP1/2 (CtBP) protein complexes. To specifically dissect the role of CtBP interaction with E1A, we engineered a mutation (DL→AS) within the CtBP-binding motif, PLDLS, and investigated the effect of the mutation on immortalization and Ras cooperative transformation of primary cells and viral replication. Our results suggest that CtBP-E1A interaction suppresses immortalization and Ras co-operative transformation of primary rodent epithelial cells without significantly influencing the tumorigenic activities of transformed cells in immunodeficient and immunocompetent animals. During productive infection, CtBP-E1A interaction enhances viral replication in human cells. Between the two CtBP family proteins, CtBP2 appears to restrict viral replication more than CtBP1 in human cells.


Genes & Cancer | 2016

The adenoviral E1A N-terminal domain represses MYC transcription in human cancer cells by targeting both p300 and TRRAP and inhibiting MYC promoter acetylation of H3K18 and H4K16

Ling-Jun Zhao; Paul M. Loewenstein; Maurice Green

Human cancers frequently arise from increased expression of proto-oncogenes, such as MYC and HER2. Understanding the cellular pathways regulating the transcription and expression of proto-oncogenes is important for targeted therapies for cancer treatment. Adenoviral (Ad) E1A 243R (243 aa residues) is a viral oncoprotein that interacts with key regulators of gene transcription and cell proliferation. We have shown previously that the 80 amino acid N-terminal transcriptional repression domain of E1A 243R (E1A 1-80) can target the histone acetyltransferase (HAT) p300 and repress HER2 in the HER2-overexpressing human breast cancer cell line SKBR3. Expression of E1A 1-80 induces death of SKBR3 and other cancer cell lines. In this study, we performed total cell RNA sequence analysis and identified MYC as the regulatory gene for cellular proliferation most strongly repressed by E1A 1-80. By RT-quantitative PCR analysis we show that repression of MYC in SKBR3 cells occurs early after expression of E1A 1-80, suggesting that MYC may be an early responder of E1A 1-80-mediated transcriptional repression. Of interest, while E1A 1-80 repression of MYC occurs in all eight human cancer cell lines examined, repression of HER2 is cell-type dependent. We demonstrate by ChIP analysis that MYC transcriptional repression by E1A 1-80 is associated with inhibition of acetylation of H3K18 and H4K16 on the MYC promoter, as well as inhibition of RNA Pol II binding to the MYC promoter. Deletion mutant analysis of E1A 1-80 suggests that both p300/CBP and TRRAP are involved in E1A 1-80 repression of MYC transcription. Further, E1A 1-80 interaction with p300/CBP and TRRAP is correlated with inhibition of H3K18 and H4K16 acetylation on the MYC promoter, respectively. Our results indicate that E1A 1-80 may target two important pathways for histone modification to repress transcription in human cancer cells.


Journal of Virology | 2016

The Cellular Protein Complex Associated with a Transforming Region of E1A Contains c-MYC.

S. Vijayalingam; T. Subramanian; Ling-Jun Zhao; G. Chinnadurai

ABSTRACT The cell-transforming activity of human adenovirus 5 (hAd5) E1A is mediated by the N-terminal half of E1A, which interacts with three different major cellular protein complexes, p300/CBP, TRRAP/p400, and pRb family members. Among these protein interactions, the interaction of pRb family proteins with conserved region 2 (CR2) of E1A is known to promote cell proliferation by deregulating the activities of E2F family transcription factors. The functional consequences of interaction with the other two protein complexes in regulating the transforming activity of E1A are not well defined. Here, we report that the E1A N-terminal region also interacted with the cellular proto-oncoprotein c-MYC and the homolog of enhancer of yellow 2 (ENY2). Our results suggested that these proteins interacted with an essential E1A transforming domain spanning amino acid residues 26 to 35 which also interacted with TRRAP and p400. Small interfering RNA (siRNA)-mediated depletion of TRRAP reduced c-MYC interaction with E1A, while p400 depletion did not. In contrast, depletion of TRRAP enhanced ENY2 interaction with E1A, suggesting that ENY2 and TRRAP may interact with E1A in a competitive manner. The same E1A region additionally interacted with the constituents of a deubiquitinase complex consisting of USP22, ATXN7, and ATXN7L3 via TRRAP. Acute short hairpin RNA (shRNA)-mediated depletion of c-MYC reduced the E1A transforming activity, while depletion of ENY2 and MAX did not. These results suggested that the association of c-MYC with E1A may, at least partially, play a role in the E1A transformation activity, independently of MAX. IMPORTANCE The transforming region of adenovirus E1A consists of three short modules which complex with different cellular protein complexes. The mechanism by which one of the transforming modules, CR2, promotes cell proliferation, through inactivating the activities of the pRb family proteins, is better understood than the activities of the other domains. Our analysis of the E1A proteome revealed the presence of the proto-oncoprotein c-MYC and of ENY2. We mapped these interactions to a critical transforming module of E1A that was previously known to interact with the scaffolding molecule TRRAP and the E1A-binding protein p400. We showed that c-MYC interacted with E1A through TRRAP, while ENY2 interacted with it independently. The data reported here indicated that depletion of c-MYC in normal human cells reduced the transforming activity of E1A. Our result raises a novel paradigm in oncogenic transformation by a DNA viral oncogene, the E1A gene, that may exploit the activity of a cellular oncogene, the c-MYC gene, in addition to inactivation of the tumor suppressors, such as pRb.

Collaboration


Dive into the Ling-Jun Zhao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dongsheng Xu

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Luwen Zhang

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge