Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ling-Pei Ho is active.

Publication


Featured researches published by Ling-Pei Ho.


Gene Therapy | 1997

Evidence for safety and efficacy of DOTAP cationic liposome mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis

David J. Porteous; Julia R. Dorin; Gerry McLachlan; Hazel Davidson-Smith; Heather Davidson; Barbara Stevenson; A D Carothers; William Wallace; S Moralee; C Hoenes; G Kallmeyer; U Michaelis; K Naujoks; Ling-Pei Ho; J M Samways; M. Imrie; A P Greening; Ja Innes

In cystic fibrosis (CF), mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) gene results in defective transepithelial ion transport, leading to life shortening inflammatory lung disease. Before lung studies, we tested the safety and efficacy of gene delivery to the nasal epithelium of CF patients using pCMV-CFTR–DOTAP cationic liposome complex. A single dose of 400 μg pCMV-CFTR:2.4 mg DOTAP was administered in a randomised, double-blinded fashion to the nasal epithelium of eight CF patients, with a further eight receiving buffer only. Patients were monitored for signs and symptoms for 2 weeks before treatment and 4 weeks after treatment. Inflammatory cells were quantified in a nasal biopsy taken 3 days after treatment. There was no evidence for excess nasal inflammation, circulating inflammatory markers or other adverse events ascribable to active treatment. Gene transfer and expression were assayed by the polymerase chain reaction. Transgene DNA was detected in seven of the eight treated patients up to 28 days after treatment and vector derived CFTR mRNA in two of the seven patients at +3 and +7 days. Transepithelial ion transport was assayed before and after treatment by nasal potential difference during drug perfusion and by SPQ fluorescence halide ion conductance. Partial, sustained correction of CFTR-related functional changes toward normal values were detected in two treated patients. The level of gene transfer and functional correction were comparable to those reported previously using adenoviral vectors or another DNA–liposome complex, but here were sustained and uncompromised by false positives. These results justify further studies with pCMV-CFTR–DOTAP aimed at treating CF lung disease.


Blood | 2013

Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences.

Fernando O. Martinez; Laura Helming; Ronny Milde; Audrey Varin; Barbro N. Melgert; Christina Draijer; Benjamin Thomas; Marco Fabbri; Anjali Crawshaw; Ling-Pei Ho; Nick H. T. ten Hacken; Viviana Cobos Jiménez; Neeltje A. Kootstra; Jörg Hamann; David R. Greaves; Massimo Locati; Alberto Mantovani; Siamon Gordon

The molecular repertoire of macrophages in health and disease can provide novel biomarkers for diagnosis, prognosis, and treatment. Th2-IL-4–activated macrophages (M2) have been associated with important diseases in mice, yet no specific markers are available for their detection in human tissues. Although mouse models are widely used for macrophage research, translation to the human can be problematic and the human macrophage system remains poorly described. In the present study, we analyzed and compared the transcriptome and proteome of human and murine macrophages under resting conditions (M0) and after IL-4 activation (M2). We provide a resource for tools enabling macrophage detection in human tissues by identifying a set of 87 macrophage-related genes. Furthermore, we extend current understanding of M2 activation in different species and identify Transglutaminase 2 as a conserved M2 marker that is highly expressed by human macrophages and monocytes in the prototypic Th2 pathology asthma.


Blood | 2011

Hepcidin regulation by innate immune and infectious stimuli.

Andrew E. Armitage; Lucy A. Eddowes; Uzi Gileadi; Suzanne L. Cole; Natasha Spottiswoode; Tharini Ashtalakshmi Selvakumar; Ling-Pei Ho; Alain Townsend; Hal Drakesmith

Hepcidin controls the levels and distribution of iron, an element whose availability can influence the outcome of infections. We investigated hepcidin regulation by infection-associated cytokines, pathogen-derived molecules, and whole pathogens in vitro and in vivo. We found that IL-22, an effector cytokine implicated in responses to extracellular infections, caused IL-6-independent hepcidin up-regulation in human hepatoma cells, suggesting it might represent an additional inflammatory hepcidin agonist. Like IL-6, IL-22 caused phosphorylation of STAT3 and synergized with BMP6 potentiating hepcidin induction. In human leukocytes, IL-6 caused potent, transient hepcidin up-regulation that was augmented by TGF-β1. Pathogen-derived TLR agonists also stimulated hepcidin, most notably the TLR5 agonist flagellin in an IL-6-dependent manner. In contrast, leukocyte hepcidin induction by heat-killed Candida albicans hyphae was IL-6-independent, but partially TGF-β-dependent. In a murine acute systemic candidiasis model, C albicans strongly stimulated hepcidin, accompanied by a major reduction in transferrin saturation. Similarly, hepcidin was up-regulated with concomitant lowering of serum iron during acute murine Influenza A/PR/8/34 virus (H1N1) infection. This intracellular pathogen also stimulated hepcidin expression in leukocytes and hepatoma cells. Together, these results indicate that hepcidin induction represents a component of the innate immune response to acute infection, with the potential to affect disease pathogenesis.


Thorax | 1998

Nitrite levels in breath condensate of patients with cystic fibrosis is elevated in contrast to exhaled nitric oxide

Ling-Pei Ho; J A Innes; A P Greening

BACKGROUND Nitric oxide (NO) is released by activated macrophages, neutrophils, and stimulated bronchial epithelial cells. Exhaled NO has been shown to be increased in patients with asthma and has been put forward as a marker of airways inflammation. However, we have found that exhaled NO is not raised in patients with cystic fibrosis, even during infective pulmonary exacerbation. One reason for this may be that excess airway secretions may prevent diffusion of gaseous NO into the airway lumen. We hypothesised that exhaled NO may not reflect total NO production in chronically suppurative airways and investigated nitrite as another marker of NO production. METHODS Breath condensate nitrite concentration and exhaled NO levels were measured in 21 clinically stable patients with cystic fibrosis of mean age 26 years and mean FEV1 57% and 12 healthy normal volunteers of mean age 31 years. Breath condensate was collected with a validated method which excluded saliva and nasal air contamination and nitrite levels were measured using the Griess reaction. Exhaled NO was measured using a sensitive chemiluminescence analyser (LR2000) at an exhalation rate of 250 ml/s. Fourteen patients with cystic fibrosis had circulating plasma leucocyte levels and differential analysis performed on the day of breath collection. RESULTS Nitrite levels were significantly higher in patients with cystic fibrosis than in normal subjects (median 1.93 μM compared with 0.33 μM). This correlated positively with circulating plasma leucocytes and neutrophils (r = 0.6). In contrast, exhaled NO values were not significantly different from the normal range (median 3.8 ppb vs 4.4 ppb). There was no correlation between breath condensate nitrite and lung function and between breath condensate nitrite and exhaled NO. CONCLUSIONS Nitrite levels in breath condensate were raised in stable patients with cystic fibrosis in contrast to exhaled NO. This suggests that nitrite levels may be a more useful measure of NO production and possibly airways inflammation in suppurative airways and that exhaled NO may not reflect total NO production.


PLOS ONE | 2013

Transcriptional blood signatures distinguish pulmonary tuberculosis, pulmonary sarcoidosis, pneumonias and lung cancers.

Chloe I. Bloom; Christine M. Graham; Matthew Berry; Fotini Rozakeas; Paul S. Redford; Yuanyuan Wang; Zhaohui Xu; Katalin A. Wilkinson; Robert J. Wilkinson; Yvonne Kendrick; Gilles Devouassoux; Tristan Ferry; Makoto Miyara; Diane Bouvry; Valeyre Dominique; Guy Gorochov; Derek Blankenship; Mitra Saadatian; Phillip Vanhems; Huw L Beynon; Rama Vancheeswaran; Melissa Wickremasinghe; Damien Chaussabel; Jacques Banchereau; Virginia Pascual; Ling-Pei Ho; Marc Lipman; Anne O’Garra

Rationale New approaches to define factors underlying the immunopathogenesis of pulmonary diseases including sarcoidosis and tuberculosis are needed to develop new treatments and biomarkers. Comparing the blood transcriptional response of tuberculosis to other similar pulmonary diseases will advance knowledge of disease pathways and help distinguish diseases with similar clinical presentations. Objectives To determine the factors underlying the immunopathogenesis of the granulomatous diseases, sarcoidosis and tuberculosis, by comparing the blood transcriptional responses in these and other pulmonary diseases. Methods We compared whole blood genome-wide transcriptional profiles in pulmonary sarcoidosis, pulmonary tuberculosis, to community acquired pneumonia and primary lung cancer and healthy controls, before and after treatment, and in purified leucocyte populations. Measurements and Main Results An Interferon-inducible neutrophil-driven blood transcriptional signature was present in both sarcoidosis and tuberculosis, with a higher abundance and expression in tuberculosis. Heterogeneity of the sarcoidosis signature correlated significantly with disease activity. Transcriptional profiles in pneumonia and lung cancer revealed an over-abundance of inflammatory transcripts. After successful treatment the transcriptional activity in tuberculosis and pneumonia patients was significantly reduced. However the glucocorticoid-responsive sarcoidosis patients showed a significant increase in transcriptional activity. 144-blood transcripts were able to distinguish tuberculosis from other lung diseases and controls. Conclusions Tuberculosis and sarcoidosis revealed similar blood transcriptional profiles, dominated by interferon-inducible transcripts, while pneumonia and lung cancer showed distinct signatures, dominated by inflammatory genes. There were also significant differences between tuberculosis and sarcoidosis in the degree of their transcriptional activity, the heterogeneity of their profiles and their transcriptional response to treatment.


Nature Communications | 2013

Interferon-induced transmembrane protein-3 genetic variant rs12252-C is associated with severe influenza in Chinese individuals.

Yonghong Zhang; Yan Zhao; Ning Li; Yanchun Peng; Eleni Giannoulatou; Ronghua Jin; Huiping Yan; Hao Wu; Jin-Hua Liu; Ning Liu; Dayan Wang; Yuelong Shu; Ling-Pei Ho; Paul Kellam; Andrew J. McMichael; Tao Dong

The SNP rs12252-C allele alters the function of interferon-induced transmembrane protein-3 increasing the disease severity of influenza virus infection in Caucasians, but the allele is rare. However, rs12252-C is much more common in Han Chinese. Here we report that the CC genotype is found in 69% of Chinese patients with severe pandemic influenza A H1N1/09 virus infection compared with 25% in those with mild infection. Specifically, the CC genotype was estimated to confer a sixfold greater risk for severe infection than the CT and TT genotypes. More importantly, because the risk genotype occurs with such a high frequency, its effect translates to a large population-attributable risk of 54.3% for severe infection in the Chinese population studied compared with 5.4% in Northern Europeans. Interferon-induced transmembrane protein-3 genetic variants could, therefore, have a strong effect of the epidemiology of influenza in China and in people of Chinese descent.


European Respiratory Journal | 1998

Exhaled nitric oxide is not elevated in the inflammatory airways diseases of cystic fibrosis and bronchiectasis

Ling-Pei Ho; J A Innes; A P Greening

Airways inflammation has been associated with increased nitric oxide (NO) in the exhaled breath. It was, therefore, questioned whether exhaled NO could act as an indicator of the severity of airways inflammation in the chronic suppurative lung diseases cystic fibrosis (CF) and bronchiectasis. NO levels in a single exhalation were measured using a chemiluminescence analyser. Thirty-six patients with CF and 16 with bronchiectasis were studied and compared with 22 normal subjects and 35 asthmatic patients. All subjects were nonsmokers and all measurements were made when patients were clinically stable. In addition, exhaled NO was measured in 10 CF patients at the time of onset of an acute infective exacerbation and followed for 7 days during the treatment of the exacerbation in eight of the 10 patients. No significant differences were found in NO levels in patients with CF or bronchiectasis compared with normals (median 4.0, 5.5 and 4.4 parts per billion (ppb), respectively), but all were lower than in asthma patients (10.4 ppb). The NO levels in the CF patients at time of exacerbation were not increased and did not change during treatment. These data show that nitric oxide levels in the exhaled breath of patients with chronic suppurative lung diseases, in contrast to asthma, are not elevated, despite the presence of substantial airways inflammation. Possible explanations include poor diffusion of nitric oxide across increased and viscous airway secretions, removal of nitric oxide by reaction with reactive oxygen species in the inflamed environment and failure of upregulation of epithelial inducible nitric oxide synthase in chronic suppurative conditions.


Nature Biotechnology | 2012

Polyethyleneimine is a potent mucosal adjuvant for viral glycoprotein antigens

Frank Wegmann; Kate H. Gartlan; Ali M. Harandi; Sarah A. Brinckmann; Margherita Coccia; Wai Ling Kok; Suzanne L. Cole; Ling-Pei Ho; Teresa Lambe; Manoj Puthia; Catharina Svanborg; Erin M. Scherer; George Krashias; Adam Williams; Joseph N. Blattman; Philip D. Greenberg; Richard A. Flavell; Amin E. Moghaddam; Neil C. Sheppard; Quentin J. Sattentau

There are no mucosal adjuvant formulations licensed for human use, despite protection against many mucosally-transmitted infections probably requiring immunity at the site of pathogen entry1. Polyethyleneimines (PEI) are organic polycations used as nucleic acid transfection reagents in vitro, and gene and DNA vaccine delivery vehicles in vivo2, 3. Here we show that PEI has unexpected and unusually potent mucosal adjuvant activity in conjunction with viral subunit glycoprotein antigens. Single intranasal administration of influenza HA or HSV-2 gD with PEI elicited robust protection from otherwise lethal infection, and was superior to existing experimental mucosal adjuvants. PEI formed nanoscale complexes with antigen that were taken up by antigen presenting cells in vitro and in vivo, promoted DC trafficking to draining lymph nodes and induced non-proinflammatory cytokine responses. PEI adjuvanticity required release of host dsDNA that triggered Irf-3-dependent signaling. PEI therefore merits further investigation as a mucosal adjuvant for human use.Protection against mucosally transmitted infections probably requires immunity at the site of pathogen entry, yet there are no mucosal adjuvant formulations licensed for human use. Polyethyleneimine (PEI) represents a family of organic polycations used as nucleic acid transfection reagents in vitro and DNA vaccine delivery vehicles in vivo. Here we show that diverse PEI forms have potent mucosal adjuvant activity for viral subunit glycoprotein antigens. A single intranasal administration of influenza hemagglutinin or herpes simplex virus type-2 (HSV-2) glycoprotein D with PEI elicited robust antibody-mediated protection from an otherwise lethal infection, and was superior to existing experimental mucosal adjuvants. PEI formed nanoscale complexes with antigen, which were taken up by antigen-presenting cells in vitro and in vivo, promoted dendritic cell trafficking to draining lymph nodes and induced non-proinflammatory cytokine responses. PEI adjuvanticity required release of host double-stranded DNA that triggered Irf3-dependent signaling. PEI therefore merits further investigation as a mucosal adjuvant for human use.


Nature Communications | 2016

MAIT cells are activated during human viral infections.

Bonnie van Wilgenburg; Iris Scherwitzl; Edward C. Hutchinson; Tianqi Leng; Ayako Kurioka; Corinna Kulicke; Catherine de Lara; Suzanne L. Cole; Sirijitt Vasanawathana; Wannee Limpitikul; Prida Malasit; Duncan Young; Laura Denney; Michael D. Moore; Paolo Fabris; Maria Teresa Giordani; Ye Htun Oo; Stephen M. Laidlaw; Lynn B. Dustin; Ling-Pei Ho; Fiona M. Thompson; Narayan Ramamurthy; Juthathip Mongkolsapaya; Christian B. Willberg; Gavin R. Screaton; Paul Klenerman

Mucosal-associated invariant T (MAIT) cells are abundant in humans and recognize bacterial ligands. Here, we demonstrate that MAIT cells are also activated during human viral infections in vivo. MAIT cells activation was observed during infection with dengue virus, hepatitis C virus and influenza virus. This activation—driving cytokine release and Granzyme B upregulation—is TCR-independent but dependent on IL-18 in synergy with IL-12, IL-15 and/or interferon-α/β. IL-18 levels and MAIT cell activation correlate with disease severity in acute dengue infection. Furthermore, HCV treatment with interferon-α leads to specific MAIT cell activation in vivo in parallel with an enhanced therapeutic response. Moreover, TCR-independent activation of MAIT cells leads to a reduction of HCV replication in vitro mediated by IFN-γ. Together these data demonstrate MAIT cells are activated following viral infections, and suggest a potential role in both host defence and immunopathology.


The Lancet | 2005

Deficiency of a subset of T-cells with immunoregulatory properties in sarcoidosis

Ling-Pei Ho; Britta C. Urban; David R Thickett; Robert J. O. Davies; Andrew J. McMichael

BACKGROUND Sarcoidosis is a multisystem disorder that predominantly involves the lungs, characterised by a T-helper 1 (Th1) biased CD4-positive T-cell response and granuloma formation, for which the explanation is unknown. A newly identified subset of T-cells with immunoregulatory functions, CD1d-restricted natural-killer T (NKT) cells, has been shown to protect against disorders with increased CD4-positive Th1 responses in animals. We explored whether abnormalities in these cells are implicated in the pathogenesis of sarcoidosis. METHODS We generated fluorescence-labelled CD1d-tetrameric complexes and used them, with monoclonal antibodies to Valpha24 and Vbeta11 T-cell receptor, to assess the frequency of CD1d-restricted NKT cells in the peripheral blood of 60 patients with histologically proven sarcoidosis (16 with Lofgrens syndrome) and 60 healthy controls. Lung lymphocytes were also analysed in 16 of the patients with sarcoidosis. FINDINGS CD1d-restricted NKT cells were absent or greatly reduced in peripheral blood from all patients with sarcoidosis, except those with Lofgrens syndrome (median proportion of lymphocytes 0.01% [IQR 0-0.03] vs 0.06% [0.03-0.12] in controls; p=0.0004). The deficiency was found in both acute and resolved disease and was unrelated to systemic corticosteroid therapy. There was no difference in the proportion of CD1d-restricted NKT cells between peripheral blood and lungs in patients, suggesting that the peripheral-blood deficiency is not due to sequestration of these cells in the lungs. The NKT cells were not observed in mediastinal lymph nodes or granulomatous lesions. CD1d expression on antigen-presenting cells of patients was normal, thus the deficiency of CD1d-restricted NKT cells is not explained by abnormal CD1d expression. INTERPRETATION Loss of immunoregulation by CD1d-restricted NKT cells could explain the amplified and persistent T-cell activity that characterises sarcoidosis. RELEVANCE TO PRACTICE Our findings give new insight into the pathogenesis of sarcoidosis and draw attention to a potential target for therapeutic modulation in sarcoidosis.

Collaboration


Dive into the Ling-Pei Ho's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A P Greening

Western General Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J A Innes

Central Manchester University Hospitals NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge