Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lingdi Wang is active.

Publication


Featured researches published by Lingdi Wang.


Journal of Hepatology | 2010

Amelioration of high fat diet induced liver lipogenesis and hepatic steatosis by interleukin-22

Ling Yang; Yixuan Zhang; Lingdi Wang; Fengjuan Fan; Lu Zhu; Zhigang Li; Xiangbo Ruan; Heng Huang; ZhenZhen(王甄真) Wang; Zhihua Huang; Yuliang Huang; Xiaoqiang Yan; Yan(陈雁) Chen

BACKGROUND & AIMS Interleukin-22 (IL-22) is a Th17-related cytokine within the IL-10 family and plays an important role in host defense and inflammatory responses in orchestration with other Th17 cytokines. IL-22 exerts its functions in non-immune cells as its functional receptor IL-22R1 is restricted in peripheral tissues but not in immune cells. It was recently found that IL-22 serves as a protective molecule to counteract the destructive nature of the T cell-mediated immune response to liver damage. However, it is currently unknown whether IL-22 has an effect on lipid metabolism in the liver. METHODS In this study, we demonstrate that IL-22 alleviates hepatic steatosis induced by high fat diet (HFD). RESULTS Administration of recombinant murine IL-22 (rmIL-22) was able to stimulate STAT3 phosphorylation in HepG2 cells and mouse liver. The activation of STAT3 by rmIL-22 was reduced by the over-expression of a dominant negative IL-22R1. Within hours after rmIL-22 treatment, the expression of lipogenesis-related genes including critical transcription factors and enzymes for lipid synthesis in the liver was significantly down-regulated. The levels of triglyceride and cholesterol in the liver were significantly reduced by long-term treatment of rmIL-22 in C57BL/6 and ob/ob mice fed with HFD. The HFD-induced increases of ALT and AST in ob/ob mice were ameliorated by rmIL-22 treatment. In addition, the expression of fatty acid synthase and TNF-alpha in the liver was decreased by long-term rmIL-22 administration. CONCLUSIONS Collectively, these data indicate that IL-22, in addition to its known functions in host defense and inflammation, has a protective role in HFD-induced hepatic steatosis via its regulation on lipid metabolism in the liver.


Journal of Biological Chemistry | 2012

Tollip, an Intracellular Trafficking Protein, Is a Novel Modulator of the Transforming Growth Factor-β Signaling Pathway

Lu Zhu; Lingdi Wang; Xiaolin Luo; Yongxian(张永贤) Zhang; QiuRong(丁秋蓉) Ding; Xiaomeng Jiang; Xiao Wang; Yi(潘怡) Pan; Yan(陈雁) Chen

Background: How TGF-β signaling pathway is modulated by intracellular trafficking is not fully understood. Results: Tollip interacts with Smad7 and TGF-β receptors and negatively regulates cellular signaling and function of TGF-β. Conclusion: Tollip modulates intracellular trafficking and degradation of TGF-β receptors. Significance: Tollip is a novel modulator of TGF-β signaling pathway. Upon activation, TGF-β type I receptor (TβRI) undergoes active ubiquitination via recruitment of E3 ligases to the receptor complex by Smad7. However, how ubiquitination of TβRI is coupled to intracellular trafficking, and protein degradation remains unclear. We report here that Tollip, an adaptor protein that contains both ubiquitin-associated domains and endosome-targeting domain, plays an important role in modulating trafficking and degradation of TβRI. Tollip was previously demonstrated to possess a functional role in modulating the signaling of interleukin-1 and Toll-like receptors. We identify here that Tollip interacts with Smad7, a major modulatory protein involved in the negative regulation of TGF-β signaling. Overexpression of Tollip antagonizes TGF-β-stimulated transcriptional response, Smad2 phosphorylation, and epithelial-mesenchymal transition. Tollip also interacts with ubiquitinated TβRI, and such interaction requires ubiquitin-associated domains of Tollip. The interaction and intracellular colocalization of Tollip with TβRI is enhanced by Smad7. Overexpression of Tollip accelerates protein degradation of activated TβRI. In addition, Tollip alters subcellular compartmentalization and endosomal trafficking of activated TβRI. Collectively, our studies reveal that Tollip cooperates with Smad7 to modulate intracellular trafficking and degradation of ubiquitinated TβRI, whereby negatively regulates TGF-β signaling pathway.


Carcinogenesis | 2012

PAQR3 Plays a Suppressive Role in the Tumorigenesis of Colorectal Cancers

Xiao Wang; Xuebing Li; Fengjuan Fan; Shi Jiao; Lingdi Wang; Lu Zhu; Yi(潘怡) Pan; Guohao Wu; Zhi-Qiang Ling; Jing(方靖) Fang; Yan(陈雁) Chen

PAQR3 is a member of the progestin and adipoQ receptor (PAQR) family and was recently characterized as a spatial regulator that negatively modulates Ras/Raf/MEK/ERK signaling cascade. However, little is known about the physiological functions of PAQR3 in the tumorigenesis of colorectal cancers. The function of PAQR3 in colorectal cancer development in mice was analyzed by crossing Paqr3-depleted mice with Apc(Min/+) mice that have a germline mutation of the gene-encoding tumor suppressor adenomatous polyposis coli (APC). The survival time and tumor area in the small intestine of the Apc(Min/+) mice was significantly aggravated by Paqr3 deletion. The cell proliferation rate, anchorage-independent growth, EGF-stimulated ERK phosphorylation and EGF-induced nuclear accumulation of β-catenin were inhibited by PAQR3 overexpression and enhanced by PAQR3 knockdown in SW-480 colorectal cancer cells. In humans, the expression level of PAQR3 was significantly decreased in colorectal cancer samples in comparison with adjacent normal tissues. In addition, the expression level of PAQR3 was inversely associated with tumor grade in the colorectal cancer samples. Collectively, our data reveal for the first time that PAQR3 has a tumor suppressor activity in the development of colorectal cancers.


Diabetes | 2013

PAQR3 modulates insulin signaling by shunting phosphoinositide 3-kinase p110α to the Golgi apparatus

Xiao Wang; Lingdi Wang; Lu Zhu; Yi(潘怡) Pan; Fei Xiao; Weizhong Liu; ZhenZhen(王甄真) Wang; Feifan(郭非凡) Guo; Yong(刘勇) Liu; Walter G. Thomas; Yan(陈雁) Chen

Phosphoinositide 3-kinase (PI3K) mediates insulin actions by relaying signals from insulin receptors (IRs) to downstream targets. The p110α catalytic subunit of class IA PI3K is the primary insulin-responsive PI3K implicated in insulin signaling. We demonstrate here a new mode of spatial regulation for the p110α subunit of PI3K by PAQR3 that is exclusively localized in the Golgi apparatus. PAQR3 interacts with p110α, and the intracellular targeting of p110α to the Golgi apparatus is reduced by PAQR3 downregulation and increased by PAQR3 overexpression. Insulin-stimulated PI3K activity and phosphoinositide (3,4,5)-triphosphate production are enhanced by Paqr3 deletion and reduced by PAQR3 overexpression in hepatocytes. Deletion of Paqr3 enhances insulin-stimulated phosphorylation of AKT and glycogen synthase kinase 3β, but not phosphorylation of IR and IR substrate-1 (IRS-1), in hepatocytes, mouse liver, and skeletal muscle. Insulin-stimulated GLUT4 translocation to the plasma membrane and glucose uptake are enhanced by Paqr3 ablation. Furthermore, PAQR3 interacts with the domain of p110α involved in its binding with p85, the regulatory subunit of PI3K. Overexpression of PAQR3 dose-dependently reduces the interaction of p85α with p110α. Thus, PAQR3 negatively regulates insulin signaling by shunting cytosolic p110α to the Golgi apparatus while competing with p85 subunit in forming a PI3K complex with p110α.


PLOS ONE | 2011

High Fat Diet Induces Formation of Spontaneous Liposarcoma in Mouse Adipose Tissue with Overexpression of Interleukin 22

Zheng Wang; Ling Yang; Yuhui Jiang; Zhi-Qiang Ling; Zhigang Li; Yuan Cheng; Heng Huang; Lingdi Wang; Yi(潘怡) Pan; ZhenZhen(王甄真) Wang; Xiaoqiang Yan; Yan(陈雁) Chen

Interleukin 22 (IL-22) is a T-cell secreted cytokine that modulates inflammatory response in nonhematopoietic tissues such as epithelium and liver. The function of IL-22 in adipose tissue is currently unknown. We generated a transgenic mouse model with overexpression of IL-22 specifically in adipose tissue. The IL-22 transgenic mice had no apparent changes in obesity and insulin resistance after feeding with high fat diet (HFD). Unexpectedly, all the IL-22 transgenic mice fed with HFD for four months developed spontaneous tumors in epididymal adipose tissue. Histological analysis indicated that the tumors were well-differentiated liposarcomas with infiltration of inflammatory cells. IL-22 overexpression promotes production of inflammatory cytokines such as IL-1β and IL-10 and stimulates ERK phosphorylation in adipose tissue. Furthermore, IL-22 treatment in differentiated 3T3-L1 adipocytes could induce IL-1β and IL-10 expression, together with stimulation of ERK phosphorylation. Taken together, our study not only established a novel mouse model with spontaneous liposarcoma, but also revealed that IL-22 overexpression may collaborate with diet-induced obesity to impact on tumor development in mouse.


PLOS ONE | 2011

Hepatic deletion of Smad7 in mouse leads to spontaneous liver dysfunction and aggravates alcoholic liver injury.

Lu Zhu; Lingdi Wang; Xiao Wang; Xiaolin Luo; Ling Yang; Rui Zhang; Hongkun Yin; Dong(谢东) Xie; Yi(潘怡) Pan; Yan(陈雁) Chen

Background TGF-β has been known to play an important role in various liver diseases including fibrosis and alcohol-induced fatty liver. Smad7 is an intracellular negative regulator of TGF-β signaling. It is currently unclear whether endogenous Smad7 has an effect on liver function and alcoholic liver damage. Methodology/Principal Findings We used Cre/loxP system by crossing Alb-Cre mice with Smad7loxP/loxP mice to generate liver-specific deletion of Smad7 with loss of the indispensable MH2 domain. Alcoholic liver injury was achieved by feeding mice with a liquid diet containing 5% ethanol for 6 weeks, followed by a single dose of ethanol gavage. Deletion of Smad7 in the liver was associated with increased Smad2/3 phosphorylation in the liver or upon TGF-β treatment in primary hepatocytes. The majority of mice with liver specific deletion of Smad7 (Smad7liver-KO) were viable and phenotypically normal, accompanied by only slight or no reduction of Smad7 expression in the liver. However, about 30% of Smad7liver-KO mice with high efficiency of Smad7 deletion had spontaneous liver dysfunction, demonstrated as low body weight, overall deterioration, and increased serum levels of AST and ALT. Degeneration and elevated apoptosis of liver cells were observed with these mice. TGF-β-induced epithelial to mesenchymal transition (EMT) was accelerated in Smad7-deleted primary hepatocytes. In addition, alcohol-induced liver injury and steatosis were profoundly aggravated in Smad7 deficient mice, associated with upregulation of critical genes involved in lipogenesis and inflammation. Furthermore, alcohol-induced ADH1 expression was significantly abrogated by Smad7 deletion in hepatocytes. Conclusion/Significance In this study, we provided in vivo evidence revealing that endogenous Smad7 plays an important role in liver function and alcohol-induced liver injury.


Endocrinology | 2013

PAQR3 Has Modulatory Roles in Obesity, Energy Metabolism, and Leptin Signaling

Lingdi Wang; Xiao Wang; Zhenghu Li; Tingting Xia; Lu Zhu; Bin Liu; Yongxian(张永贤) Zhang; Fei Xiao; Yi(潘怡) Pan; Yong(刘勇) Liu; Feifan(郭非凡) Guo; Yan(陈雁) Chen

Diet-induced obesity is commonly associated with leptin resistance, and attenuated leptin signaling contributes to the progression of obesity. PAQR3 is a member of the progesterone and AdipoQ receptor (PAQR) family with close homology to adiponectin receptors. We hypothesized that PAQR3 is implicated in the regulation of obesity and energy homeostasis. To address this hypothesis, we fed Paqr3-deleted mice with high-fat diet (HFD), followed by analyses to evaluate obesity, hepatic steatosis, insulin resistance, metabolic rate, and leptin signaling. We found that mice with deletion of Paqr3 are resistant to HFD-induced obesity and hepatic steatosis, accompanied by improvement of insulin resistance and insulin signaling. Paqr3-deleted mice have an increased energy expenditure and physical activity. HFD-induced leptin resistance is reversed by Paqr3 ablation. Overexpression of PAQR3 reduces leptin signaling whereas deletion of Paqr3 enhances leptin signaling in the hypothalamus. In conclusion, this study reveals that PAQR3 has an important physiological function in modulating obesity, energy metabolism, and leptin signaling.


Molecular Endocrinology | 2014

Regulation of Glucose Homeostasis and Lipid Metabolism by PPP1R3G-mediated Hepatic Glycogenesis

Yongxian(张永贤) Zhang; Daqian Xu; Heng Huang; Susie Chen; Lingdi Wang; Lu Zhu; Xiaomeng Jiang; Xiangbo Ruan; Xiaolin Luo; Peijuan Cao; Weizhong Liu; Yi(潘怡) Pan; ZhenZhen(王甄真) Wang; Yan(陈雁) Chen

Liver glycogen metabolism plays an important role in glucose homeostasis. Glycogen synthesis is mainly regulated by glycogen synthase that is dephosphorylated and activated by protein phosphatase 1 (PP1) in combination with glycogen-targeting subunits or G subunits. There are seven G subunits (PPP1R3A to G) that control glycogenesis in different organs. PPP1R3G is a recently discovered G subunit whose expression is changed along the fasting-feeding cycle and is proposed to play a role in postprandial glucose homeostasis. In this study, we analyzed the physiological function of PPP1R3G using a mouse model with liver-specific overexpression of PPP1R3G. PPP1R3G overexpression increases hepatic glycogen accumulation, stimulates glycogen synthase activity, elevates fasting blood glucose level, and accelerates postprandial blood glucose clearance. In addition, the transgenic mice have a reduced fat composition, together with decreased hepatic triglyceride level. Fasting-induced hepatic steatosis is relieved by PPP1R3G overexpression. In addition, PPP1R3G overexpression is able to elevate glycogenesis in primary hepatocytes. The glycogen-binding domain is indispensable for the physiological activities of PPP1R3G on glucose metabolism and triglyceride accumulation in the liver. Cumulatively, these data indicate that PPP1R3G plays a critical role in postprandial glucose homeostasis and liver triglyceride metabolism via its regulation on hepatic glycogenesis.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

Progesterone and AdipoQ Receptor 11 Links Ras Signaling to Cardiac Development in Zebrafish

Heng Huang; Ting Jin; Jing He; QiuRong(丁秋蓉) Ding; Daqian Xu; Lingdi Wang; Yixuan Zhang; Yi(潘怡) Pan; ZhenZhen(王甄真) Wang; Yan(陈雁) Chen

Objective—Progesterone and adipoQ receptor (PAQR) 10 and PAQR11 are 2 highly homologous genes involved in compartmentalized Ras signaling in the Golgi apparatus. The aim of this study was to investigate the physiological functions of PAQR10 and PAQR11. Methods and Results—We used zebrafish as a model system to analyze the potential function of PAQR10/PAQR11. The expression profiles of PAQR10 and PAQR11 in zebrafish embryos are overlapping in many areas, but only PAQR11 is expressed in the developing heart. Knockdown of PAQR11 but not PAQR10 in zebrafish embryos causes cardiac developmental defects, including dilation of cardiac chambers, abnormal heart looping, disruption of atrioventricular cushion formation, heart edema, and blood regurgitation. PAQR11 knockdown markedly reduces the number and proliferation rate of cardiomyocytes and alters the morphology of myocardial cells during early heart development. The cardiac defects caused by PAQR11 knockdown can be phenocopied by MEK inhibitors and a dominant negative Ras. Furthermore, constitutively active Ras and especially a Golgi-localized but not a plasma membrane–localized Ras are able to rescue the cardiac defects caused by PAQR11 knockdown. Conclusion—This study not only provides in vivo evidence that PAQR11 plays a critical role in heart morphogenesis but also pinpoints the importance of compartmentalized Ras signaling during development.


Biochemical Journal | 2015

DDB2 is involved in ubiquitination and degradation of PAQR3 and regulates tumorigenesis of gastric cancer cells

Qiao S; Weiwei Guo; Lujian Liao; Lingdi Wang; Z.G. Wang; Rui Zhang; Daqian Xu; Yuying Zhang; Yi(潘怡) Pan; Yan(陈雁) Chen

Collaboration


Dive into the Lingdi Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi(潘怡) Pan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lu Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiao Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heng Huang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Daqian Xu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ling Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaolin Luo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge