Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yi(潘怡) Pan is active.

Publication


Featured researches published by Yi(潘怡) Pan.


Journal of Cellular and Molecular Medicine | 2011

Apolipoprotein A-I possesses an anti-obesity effect associated with increase of energy expenditure and up-regulation of UCP1 in brown fat

Xiangbo Ruan; Zhenghu Li; Yixuan Zhang; Ling Yang; Yi(潘怡) Pan; ZhenZhen(王甄真) Wang; Gen-Sheng Feng; Yan(陈雁) Chen

Apolipoprotein A‐I (ApoA‐I) is the most abundant protein constituent of high‐density lipoprotein (HDL). Reduced plasma HDL and ApoA‐I levels have been found to be associated with obesity and metabolic syndrome in human beings. However, whether or not ApoA‐I has a direct effect on obesity is largely unknown. Here we analysed the anti‐obesity effect of ApoA‐I using two mouse models, a transgenic mouse with overexpression of ApoA‐I and the mice administered with an ApoA‐I mimetic peptide D‐4F. The mice were induced to develop obesity by feeding with high fat diet. Both ApoA‐I overexpression and D‐4F treatment could significantly reduce white fat mass and slightly improve insulin sensitivity in the mice. Metabolic analyses revealed that ApoA‐I overexpression and D‐4F treatment enhanced energy expenditure in the mice. The mRNA level of uncoupling protein (UCP)1 in brown fat tissue was elevated by ApoA‐I transgenic mice. ApoA‐I and D‐4F treatment was able to increase UCP1 mRNA and protein levels as well as to stimulate AMP‐activated protein kinase (AMPK) phosphorylation in brown adipocytes in culture. Taken together, our results reveal that ApoA‐I has an anti‐obesity effect in the mouse and such effect is associated with increases in energy expenditure and UCP1 expression in the brown fat tissue.


Journal of Biological Chemistry | 2012

Tollip, an Intracellular Trafficking Protein, Is a Novel Modulator of the Transforming Growth Factor-β Signaling Pathway

Lu Zhu; Lingdi Wang; Xiaolin Luo; Yongxian(张永贤) Zhang; QiuRong(丁秋蓉) Ding; Xiaomeng Jiang; Xiao Wang; Yi(潘怡) Pan; Yan(陈雁) Chen

Background: How TGF-β signaling pathway is modulated by intracellular trafficking is not fully understood. Results: Tollip interacts with Smad7 and TGF-β receptors and negatively regulates cellular signaling and function of TGF-β. Conclusion: Tollip modulates intracellular trafficking and degradation of TGF-β receptors. Significance: Tollip is a novel modulator of TGF-β signaling pathway. Upon activation, TGF-β type I receptor (TβRI) undergoes active ubiquitination via recruitment of E3 ligases to the receptor complex by Smad7. However, how ubiquitination of TβRI is coupled to intracellular trafficking, and protein degradation remains unclear. We report here that Tollip, an adaptor protein that contains both ubiquitin-associated domains and endosome-targeting domain, plays an important role in modulating trafficking and degradation of TβRI. Tollip was previously demonstrated to possess a functional role in modulating the signaling of interleukin-1 and Toll-like receptors. We identify here that Tollip interacts with Smad7, a major modulatory protein involved in the negative regulation of TGF-β signaling. Overexpression of Tollip antagonizes TGF-β-stimulated transcriptional response, Smad2 phosphorylation, and epithelial-mesenchymal transition. Tollip also interacts with ubiquitinated TβRI, and such interaction requires ubiquitin-associated domains of Tollip. The interaction and intracellular colocalization of Tollip with TβRI is enhanced by Smad7. Overexpression of Tollip accelerates protein degradation of activated TβRI. In addition, Tollip alters subcellular compartmentalization and endosomal trafficking of activated TβRI. Collectively, our studies reveal that Tollip cooperates with Smad7 to modulate intracellular trafficking and degradation of ubiquitinated TβRI, whereby negatively regulates TGF-β signaling pathway.


Cancer Research | 2011

Functional Cooperation of RKTG with p53 in Tumorigenesis and Epithelial-Mesenchymal Transition

Yuhui Jiang; Xiaoduo Xie; Zhigang Li; Zheng Wang; Yixuan Zhang; Zhi-Qiang Ling; Yi(潘怡) Pan; ZhenZhen(王甄真) Wang; Yan(陈雁) Chen

Raf kinase trapping to Golgi (RKTG) is a potential tumor suppressor gene due to its negative roles in regulating Ras/Raf/MEK/ERK (extracellular signal-regulated kinase) pathway and GPCR (G protein-coupled receptor) Gβγ subunit signaling. Interestingly, RKTG-deficient mice are free of tumors, although they are prone to form skin cancer on carcinogen administration. On the other hand, p53 is a well-characterized tumor suppressor gene and p53 heterozygous mice develop sarcoma and other tumors starting from 12 months of age. In RKTG-null mouse embryonic fibroblasts, lypophosphatidic acid (LPA), but not EGF (epidermal growth factor), could stimulate hyperphosphorylation of AKT and GSK3β, accompanied by increases in phosphorylation of p53 at Ser15 and accumulation of p53, as well as its target genes p21 and p16. Spontaneous skin cancer-like tumors were detected in about 25% of RKTG nullizygous and p53 heterozygous mice within 7 months of age. Hyperplasia and epithelial-mesenchymal transition (EMT) were observed in the tumor-overlying epidermis, in which LOH of p53 occurred and EMT features emerged. In p53-mutated A431 epithelial carcinoma cells, knockdown of RKTG led to enhancement of LPA-stimulated AKT and GSK3β phosphorylation, together with increased accumulation of β-catenin and appearance of EMT features that were antagonized by p53 overexpression. In HepG2 epithelial cells, LPA-stimulated AKT phosphorylation and EMT features reached maximum when both RKTG and p53 were simultaneously silenced. In summary, these results not only indicate that RKTG has an in vivo tumor suppressor function to cooperate with p53 in tumorigenesis but also suggest that p53 has an EMT checkpoint function and the loss of this function can combine with loss of RKTG to drive EMT and tumor progression.


Diabetes | 2011

Fasting-Induced Protein Phosphatase 1 Regulatory Subunit Contributes to Postprandial Blood Glucose Homeostasis via Regulation of Hepatic Glycogenesis

Xiaolin Luo; Yongxian(张永贤) Zhang; Xiangbo Ruan; Xiaomeng Jiang; Lu Zhu; Xiao Wang; QiuRong(丁秋蓉) Ding; Weizhong Liu; Yi(潘怡) Pan; ZhenZhen(王甄真) Wang; Yan(陈雁) Chen

OBJECTIVE Most animals experience fasting–feeding cycles throughout their lives. It is well known that the liver plays a central role in regulating glycogen metabolism. However, how hepatic glycogenesis is coordinated with the fasting–feeding cycle to control postprandial glucose homeostasis remains largely unknown. This study determines the molecular mechanism underlying the coupling of hepatic glycogenesis with the fasting–feeding cycle. RESEARCH DESIGN AND METHODS Through a series of molecular, cellular, and animal studies, we investigated how PPP1R3G, a glycogen-targeting regulatory subunit of protein phosphatase 1 (PP1), is implicated in regulating hepatic glycogenesis and glucose homeostasis in a manner tightly orchestrated with the fasting–feeding cycle. RESULTS PPP1R3G in the liver is upregulated during fasting and downregulated after feeding. PPP1R3G associates with glycogen pellet, interacts with the catalytic subunit of PP1, and regulates glycogen synthase (GS) activity. Fasting glucose level is reduced when PPP1R3G is overexpressed in the liver. Hepatic knockdown of PPP1R3G reduces postprandial elevation of GS activity, decreases postprandial accumulation of liver glycogen, and decelerates postprandial clearance of blood glucose. Other glycogen-targeting regulatory subunits of PP1, such as PPP1R3B, PPP1R3C, and PPP1R3D, are downregulated by fasting and increased by feeding in the liver. CONCLUSIONS We propose that the opposite expression pattern of PPP1R3G versus other PP1 regulatory subunits comprise an intricate regulatory machinery to control hepatic glycogenesis during the fasting–feeding cycle. Because of its unique expression pattern, PPP1R3G plays a major role to control postprandial glucose homeostasis during the fasting–feeding transition via its regulation on liver glycogenesis.


Carcinogenesis | 2012

PAQR3 Plays a Suppressive Role in the Tumorigenesis of Colorectal Cancers

Xiao Wang; Xuebing Li; Fengjuan Fan; Shi Jiao; Lingdi Wang; Lu Zhu; Yi(潘怡) Pan; Guohao Wu; Zhi-Qiang Ling; Jing(方靖) Fang; Yan(陈雁) Chen

PAQR3 is a member of the progestin and adipoQ receptor (PAQR) family and was recently characterized as a spatial regulator that negatively modulates Ras/Raf/MEK/ERK signaling cascade. However, little is known about the physiological functions of PAQR3 in the tumorigenesis of colorectal cancers. The function of PAQR3 in colorectal cancer development in mice was analyzed by crossing Paqr3-depleted mice with Apc(Min/+) mice that have a germline mutation of the gene-encoding tumor suppressor adenomatous polyposis coli (APC). The survival time and tumor area in the small intestine of the Apc(Min/+) mice was significantly aggravated by Paqr3 deletion. The cell proliferation rate, anchorage-independent growth, EGF-stimulated ERK phosphorylation and EGF-induced nuclear accumulation of β-catenin were inhibited by PAQR3 overexpression and enhanced by PAQR3 knockdown in SW-480 colorectal cancer cells. In humans, the expression level of PAQR3 was significantly decreased in colorectal cancer samples in comparison with adjacent normal tissues. In addition, the expression level of PAQR3 was inversely associated with tumor grade in the colorectal cancer samples. Collectively, our data reveal for the first time that PAQR3 has a tumor suppressor activity in the development of colorectal cancers.


Diabetes | 2013

PAQR3 modulates insulin signaling by shunting phosphoinositide 3-kinase p110α to the Golgi apparatus

Xiao Wang; Lingdi Wang; Lu Zhu; Yi(潘怡) Pan; Fei Xiao; Weizhong Liu; ZhenZhen(王甄真) Wang; Feifan(郭非凡) Guo; Yong(刘勇) Liu; Walter G. Thomas; Yan(陈雁) Chen

Phosphoinositide 3-kinase (PI3K) mediates insulin actions by relaying signals from insulin receptors (IRs) to downstream targets. The p110α catalytic subunit of class IA PI3K is the primary insulin-responsive PI3K implicated in insulin signaling. We demonstrate here a new mode of spatial regulation for the p110α subunit of PI3K by PAQR3 that is exclusively localized in the Golgi apparatus. PAQR3 interacts with p110α, and the intracellular targeting of p110α to the Golgi apparatus is reduced by PAQR3 downregulation and increased by PAQR3 overexpression. Insulin-stimulated PI3K activity and phosphoinositide (3,4,5)-triphosphate production are enhanced by Paqr3 deletion and reduced by PAQR3 overexpression in hepatocytes. Deletion of Paqr3 enhances insulin-stimulated phosphorylation of AKT and glycogen synthase kinase 3β, but not phosphorylation of IR and IR substrate-1 (IRS-1), in hepatocytes, mouse liver, and skeletal muscle. Insulin-stimulated GLUT4 translocation to the plasma membrane and glucose uptake are enhanced by Paqr3 ablation. Furthermore, PAQR3 interacts with the domain of p110α involved in its binding with p85, the regulatory subunit of PI3K. Overexpression of PAQR3 dose-dependently reduces the interaction of p85α with p110α. Thus, PAQR3 negatively regulates insulin signaling by shunting cytosolic p110α to the Golgi apparatus while competing with p85 subunit in forming a PI3K complex with p110α.


Journal of Nutrition | 2014

Luteolin Alleviates Alcoholic Liver Disease Induced by Chronic and Binge Ethanol Feeding in Mice

Gaigai Liu; Yuxue Zhang; Chunchun Liu; Daqian Xu; Rui Zhang; Yuan Cheng; Yi(潘怡) Pan; Cheng Huang; Yan(陈雁) Chen

Ethanol consumption can lead to hepatic steatosis that contributes to late-stage liver diseases such as cirrhosis and hepatocellular carcinoma. In this study, we investigated the potential protective effect of a flavonoid, luteolin, on ethanol-induced fatty liver development and liver injury. Six-wk-old male C57BL/6 mice were divided into 3 groups: a control group; a group exposed to alcohol by using a chronic and binge ethanol feeding protocol (EtOH); and a group that was administered daily 50 mg/kg of luteolin in addition to ethanol exposure (EtOH + Lut). A chronic and binge ethanol feeding protocol was used, including chronic ethanol consumption (1%, 2%, and 4% for 3 d, and 5% for 9 d) and a binge (30% ethanol) on the last day. Compared with the control group, the EtOH group had a significant elevation in serum concentrations of alanine aminotransferase (ALT) (561%), triglyceride (TG) (47%), and LDL cholesterol (95%), together with lipid accumulation in the liver. Compared with the EtOH group, the EtOH + Lut group had significant reductions in serum concentrations of ALT (43%), TG (22%), LDL cholesterol (52%), and lipid accumulation in the liver. Ethanol elevated liver expression of lipogenic genes including sterol regulatory element-binding protein 1c (Srebp1c) (560%), fatty acid synthase (Fasn) (190%), acetyl-CoA carboxylase (Acc) (48%), and stearoyl-CoA desaturase 1 (Scd1) (286%). Luteolin reduced ethanol-induced expression of these genes in the liver: Srebp1c (79%), Fasn (80%), Acc (60%), and Scd1 (89%). In cultured hepatocytes, luteolin prevented alcohol-induced lipid accumulation and increase in the expression of lipogenic genes. The transcriptional activity of the master regulator of lipid synthesis, sterol regulatory element-binding protein (SREBP), was enhanced by ethanol treatment (160%) and reduced by luteolin administration (67%). In addition, ethanol-induced reduction of AMP-activated protein kinase and SREBP-1c phosphorylation was abrogated by luteolin. Collectively, our study indicates that luteolin is effective in ameliorating ethanol-induced hepatic steatosis and injury.


PLOS ONE | 2011

High Fat Diet Induces Formation of Spontaneous Liposarcoma in Mouse Adipose Tissue with Overexpression of Interleukin 22

Zheng Wang; Ling Yang; Yuhui Jiang; Zhi-Qiang Ling; Zhigang Li; Yuan Cheng; Heng Huang; Lingdi Wang; Yi(潘怡) Pan; ZhenZhen(王甄真) Wang; Xiaoqiang Yan; Yan(陈雁) Chen

Interleukin 22 (IL-22) is a T-cell secreted cytokine that modulates inflammatory response in nonhematopoietic tissues such as epithelium and liver. The function of IL-22 in adipose tissue is currently unknown. We generated a transgenic mouse model with overexpression of IL-22 specifically in adipose tissue. The IL-22 transgenic mice had no apparent changes in obesity and insulin resistance after feeding with high fat diet (HFD). Unexpectedly, all the IL-22 transgenic mice fed with HFD for four months developed spontaneous tumors in epididymal adipose tissue. Histological analysis indicated that the tumors were well-differentiated liposarcomas with infiltration of inflammatory cells. IL-22 overexpression promotes production of inflammatory cytokines such as IL-1β and IL-10 and stimulates ERK phosphorylation in adipose tissue. Furthermore, IL-22 treatment in differentiated 3T3-L1 adipocytes could induce IL-1β and IL-10 expression, together with stimulation of ERK phosphorylation. Taken together, our study not only established a novel mouse model with spontaneous liposarcoma, but also revealed that IL-22 overexpression may collaborate with diet-induced obesity to impact on tumor development in mouse.


PLOS ONE | 2011

Hepatic deletion of Smad7 in mouse leads to spontaneous liver dysfunction and aggravates alcoholic liver injury.

Lu Zhu; Lingdi Wang; Xiao Wang; Xiaolin Luo; Ling Yang; Rui Zhang; Hongkun Yin; Dong(谢东) Xie; Yi(潘怡) Pan; Yan(陈雁) Chen

Background TGF-β has been known to play an important role in various liver diseases including fibrosis and alcohol-induced fatty liver. Smad7 is an intracellular negative regulator of TGF-β signaling. It is currently unclear whether endogenous Smad7 has an effect on liver function and alcoholic liver damage. Methodology/Principal Findings We used Cre/loxP system by crossing Alb-Cre mice with Smad7loxP/loxP mice to generate liver-specific deletion of Smad7 with loss of the indispensable MH2 domain. Alcoholic liver injury was achieved by feeding mice with a liquid diet containing 5% ethanol for 6 weeks, followed by a single dose of ethanol gavage. Deletion of Smad7 in the liver was associated with increased Smad2/3 phosphorylation in the liver or upon TGF-β treatment in primary hepatocytes. The majority of mice with liver specific deletion of Smad7 (Smad7liver-KO) were viable and phenotypically normal, accompanied by only slight or no reduction of Smad7 expression in the liver. However, about 30% of Smad7liver-KO mice with high efficiency of Smad7 deletion had spontaneous liver dysfunction, demonstrated as low body weight, overall deterioration, and increased serum levels of AST and ALT. Degeneration and elevated apoptosis of liver cells were observed with these mice. TGF-β-induced epithelial to mesenchymal transition (EMT) was accelerated in Smad7-deleted primary hepatocytes. In addition, alcohol-induced liver injury and steatosis were profoundly aggravated in Smad7 deficient mice, associated with upregulation of critical genes involved in lipogenesis and inflammation. Furthermore, alcohol-induced ADH1 expression was significantly abrogated by Smad7 deletion in hepatocytes. Conclusion/Significance In this study, we provided in vivo evidence revealing that endogenous Smad7 plays an important role in liver function and alcohol-induced liver injury.


PLOS ONE | 2013

Critical Roles of p53 in Epithelial-Mesenchymal Transition and Metastasis of Hepatocellular Carcinoma Cells

Zheng Wang; Yuhui Jiang; Dong-Xian Guan; Jing-Jing Li; Hongkun Yin; Yi(潘怡) Pan; Dong(谢东) Xie; Yan(陈雁) Chen

Hepatocellular carcinoma (HCC) is one of the most malignant tumors and the biggest obstacle in curing HCC is its high metastasis potential. Alteration of p53 is the most frequent genetic change found in HCC. Although the biological function of p53 in tumor initiation and progression has been well characterized, whether or not p53 is implicated in metastasis of HCC is largely unknown. In this study, we analyzed the potential functions of p53 in epithelial-mesenchymal transition (EMT) and metastasis of HCC cells. Both insulin- and TGF-β1-induced changes of critical EMT markers were greatly enhanced by p53 knockdown in HCC cells. The insulin- and TGF-β1-stimulated migration of HCC cells were enhanced by p53 knockdown. Furthermore, in vivo metastasis of HCC cells using different mouse models was robustly enhanced by p53 knockdown. In addition, we found that p53 regulation on EMT and metastasis involves β-catenin signaling. The nuclear accumulation and transcriptional activity of β-catenin was modulated by p53. The enhanced EMT phenotype, cell migration and tumor metastasis of HCC cells by p53 knockdown were abrogated by inhibiting β-catenin signal pathway. In conclusion, this study reveals that p53 plays a pivotal role in EMT and metastasis of HCC cells via its regulation on β-catenin signaling.

Collaboration


Dive into the Yi(潘怡) Pan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lingdi Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Daqian Xu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lu Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Heng Huang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiao Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Rui Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaolin Luo

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge