Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lingli Dong is active.

Publication


Featured researches published by Lingli Dong.


Nature | 2013

Draft genome of the wheat A-genome progenitor Triticum urartu

Hong-Qing Ling; Shancen Zhao; Dongcheng Liu; Wang J; Hua Sun; Chi Zhang; Huajie Fan; Dong Li; Lingli Dong; Yong Tao; Chuan Gao; Huilan Wu; Yiwen Li; Yan Cui; Xiaosen Guo; Shusong Zheng; Biao Wang; Kang Yu; Qinsi Liang; Wenlong Yang; Xueyuan Lou; Jie Chen; Mingji Feng; Jianbo Jian; Xiaofei Zhang; Guangbin Luo; Ying Jiang; Junjie Liu; Zhaobao Wang; Yuhui Sha

Bread wheat (Triticum aestivum, AABBDD) is one of the most widely cultivated and consumed food crops in the world. However, the complex polyploid nature of its genome makes genetic and functional analyses extremely challenging. The A genome, as a basic genome of bread wheat and other polyploid wheats, for example, T. turgidum (AABB), T. timopheevii (AAGG) and T. zhukovskyi (AAGGAmAm), is central to wheat evolution, domestication and genetic improvement. The progenitor species of the A genome is the diploid wild einkorn wheat T. urartu, which resembles cultivated wheat more extensively than do Aegilops speltoides (the ancestor of the B genome) and Ae. tauschii (the donor of the D genome), especially in the morphology and development of spike and seed. Here we present the generation, assembly and analysis of a whole-genome shotgun draft sequence of the T. urartu genome. We identified protein-coding gene models, performed genome structure analyses and assessed its utility for analysing agronomically important genes and for developing molecular markers. Our T. urartu genome assembly provides a diploid reference for analysis of polyploid wheat genomes and is a valuable resource for the genetic improvement of wheat.


New Phytologist | 2011

Molecular analysis of common wheat genes encoding three types of cytosolic heat shock protein 90 (Hsp90): functional involvement of cytosolic Hsp90s in the control of wheat seedling growth and disease resistance

Guan-Feng Wang; Xuening Wei; Renchun Fan; Huanbin Zhou; Xianping Wang; Chunmei Yu; Lingli Dong; Zhenying Dong; Xiaojie Wang; Zhensheng Kang; Hong-Qing Ling; Qian-Hua Shen; Daowen Wang; Xiangqi Zhang

Heat shock protein 90 (Hsp90) molecular chaperones play important roles in plant growth and responses to environmental stimuli. However, little is known about the genes encoding Hsp90s in common wheat. Here, we report genetic and functional analysis of the genes specifying cytosolic Hsp90s in this species. Three groups of homoeologous genes (TaHsp90.1, TaHsp90.2 and TaHsp90.3), encoding three types of cytosolic Hsp90, were isolated. The loci containing TaHsp90.1, TaHsp90.2 and TaHsp90.3 genes were assigned to groups 2, 7 and 5 chromosomes, respectively. TaHsp90.1 genes exhibited higher transcript levels in the stamen than in the leaf, root and culm. TaHsp90.2 and TaHsp90.3 genes were more ubiquitously transcribed in the vegetative and reproductive organs examined. Decreasing the expression of TaHsp90.1 genes through virus-induced gene silencing (VIGS) caused pronounced inhibition of wheat seedling growth, whereas the suppression of TaHsp90.2 or TaHsp90.3 genes via VIGS compromised the hypersensitive resistance response of the wheat variety Suwon 11 to stripe rust fungus. Our work represents the first systematic determination of wheat genes encoding cytosolic Hsp90s, and provides useful evidence for the functional involvement of cytosolic Hsp90s in the control of seedling growth and disease resistance in common wheat.


PLOS ONE | 2010

New Insights into the Organization, Recombination, Expression and Functional Mechanism of Low Molecular Weight Glutenin Subunit Genes in Bread Wheat

Lingli Dong; Xiaofei Zhang; Dongcheng Liu; Huajie Fan; Jiazhu Sun; Zhongjuan Zhang; Huanju Qin; Bin Li; Shanting Hao; Zhensheng Li; Daowen Wang; Aimin Zhang; Hong-Qing Ling

The bread-making quality of wheat is strongly influenced by multiple low molecular weight glutenin subunit (LMW-GS) proteins expressed in the seeds. However, the organization, recombination and expression of LMW-GS genes and their functional mechanism in bread-making are not well understood. Here we report a systematic molecular analysis of LMW-GS genes located at the orthologous Glu-3 loci (Glu-A3, B3 and D3) of bread wheat using complementary approaches (genome wide characterization of gene members, expression profiling, proteomic analysis). Fourteen unique LMW-GS genes were identified for Xiaoyan 54 (with superior bread-making quality). Molecular mapping and recombination analyses revealed that the three Glu-3 loci of Xiaoyan 54 harbored dissimilar numbers of LMW-GS genes and covered different genetic distances. The number of expressed LMW-GS in the seeds was higher in Xiaoyan 54 than in Jing 411 (with relatively poor bread-making quality). This correlated with the finding of higher numbers of active LMW-GS genes at the A3 and D3 loci in Xiaoyan 54. Association analysis using recombinant inbred lines suggested that positive interactions, conferred by genetic combinations of the Glu-3 locus alleles with more numerous active LMW-GS genes, were generally important for the recombinant progenies to attain high Zeleny sedimentation value (ZSV), an important indicator of bread-making quality. A higher number of active LMW-GS genes tended to lead to a more elevated ZSV, although this tendency was influenced by genetic background. This work provides substantial new insights into the genomic organization and expression of LMW-GS genes, and molecular genetic evidence suggesting that these genes contribute quantitatively to bread-making quality in hexaploid wheat. Our analysis also indicates that selection for high numbers of active LMW-GS genes can be used for improvement of bread-making quality in wheat breeding.


Scientific Reports | 2016

Coexpression network analysis of the genes regulated by two types of resistance responses to powdery mildew in wheat.

Juncheng Zhang; Hongyuan Zheng; Yiwen Li; Hongjie Li; Xin Liu; Huanju Qin; Lingli Dong; Daowen Wang

Powdery mildew disease caused by Blumeria graminis f. sp. tritici (Bgt) inflicts severe economic losses in wheat crops. A systematic understanding of the molecular mechanisms involved in wheat resistance to Bgt is essential for effectively controlling the disease. Here, using the diploid wheat Triticum urartu as a host, the genes regulated by immune (IM) and hypersensitive reaction (HR) resistance responses to Bgt were investigated through transcriptome sequencing. Four gene coexpression networks (GCNs) were developed using transcriptomic data generated for 20 T. urartu accessions showing IM, HR or susceptible responses. The powdery mildew resistance regulated (PMRR) genes whose expression was significantly correlated with Bgt resistance were identified, and they tended to be hubs and enriched in six major modules. A wide occurrence of negative regulation of PMRR genes was observed. Three new candidate immune receptor genes (TRIUR3_13045, TRIUR3_01037 and TRIUR3_06195) positively associated with Bgt resistance were discovered. Finally, the involvement of TRIUR3_01037 in Bgt resistance was tentatively verified through cosegregation analysis in a F2 population and functional expression assay in Bgt susceptible leaf cells. This research provides insights into the global network properties of PMRR genes. Potential molecular differences between IM and HR resistance responses to Bgt are discussed.


PLOS ONE | 2013

Haplotype Variation of Glu-D1 Locus and the Origin of Glu-D1d Allele Conferring Superior End-Use Qualities in Common Wheat

Zhenying Dong; Yushuang Yang; Yiwen Li; Kunpu Zhang; Haijuan Lou; Xueli An; Lingli Dong; Yong Qiang Gu; Olin D. Anderson; Xin Liu; Huanju Qin; Daowen Wang

In higher plants, seed storage proteins (SSPs) are frequently expressed from complex gene families, and allelic variation of SSP genes often affects the quality traits of crops. In common wheat, the Glu-D1 locus, encoding 1Dx and 1Dy SSPs, has multiple alleles. The Glu-D1d allele frequently confers superior end-use qualities to commercial wheat varieties. Here, we studied the haplotype structure of Glu-D1 genomic region and the origin of Glu-D1d. Using seven diagnostic DNA markers, 12 Glu-D1 haplotypes were detected among common wheat, European spelt wheat (T. spelta, a primitive hexaploid relative of common wheat), and Aegilops tauschii (the D genome donor of hexaploid wheat). By comparatively analyzing Glu-D1 haplotypes and their associated 1Dx and 1Dy genes, we deduce that the haplotype carrying Glu-D1d was likely differentiated in the ancestral hexaploid wheat around 10,000 years ago, and was subsequently transmitted to domesticated common wheat and T. spelta. A group of relatively ancient Glu-D1 haplotypes was discovered in Ae. tauschii, which may serve for the evolution of other haplotypes. Moreover, a number of new Glu-D1d variants were found in T. spelta. The main steps in Glu-D1d differentiation are proposed. The implications of our work for enhancing the utility of Glu-D1d in wheat quality improvement and studying the SSP alleles in other crop species are discussed.


Scientific Reports | 2017

Genome-wide analysis of complex wheat gliadins, the dominant carriers of celiac disease epitopes

Da-Wei Wang; Da Li; Junjun Wang; Yue Zhao; Zhaojun Wang; Guidong Yue; Xin Liu; Huanju Qin; Kunpu Zhang; Lingli Dong; Daowen Wang

Gliadins, specified by six compound chromosomal loci (Gli-A1/B1/D1 and Gli-A2/B2/D2) in hexaploid bread wheat, are the dominant carriers of celiac disease (CD) epitopes. Because of their complexity, genome-wide characterization of gliadins is a strong challenge. Here, we approached this challenge by combining transcriptomic, proteomic and bioinformatic investigations. Through third-generation RNA sequencing, full-length transcripts were identified for 52 gliadin genes in the bread wheat cultivar Xiaoyan 81. Of them, 42 were active and predicted to encode 25 α-, 11 γ-, one δ- and five ω-gliadins. Comparative proteomic analysis between Xiaoyan 81 and six newly-developed mutants each lacking one Gli locus indicated the accumulation of 38 gliadins in the mature grains. A novel group of α-gliadins (the CSTT group) was recognized to contain very few or no CD epitopes. The δ-gliadins identified here or previously did not carry CD epitopes. Finally, the mutant lacking Gli-D2 showed significant reductions in the most celiac-toxic α-gliadins and derivative CD epitopes. The insights and resources generated here should aid further studies on gliadin functions in CD and the breeding of healthier wheat.


Molecular Ecology Resources | 2017

High-throughput mining of E-genome-specific SNPs for characterizing Thinopyrum elongatum introgressions in common wheat

Haijuan Lou; Lingli Dong; Kunpu Zhang; Da-Wei Wang; Maolin Zhao; Yiwen Li; Chaowu Rong; Huanju Qin; Aimin Zhang; Zhenying Dong; Daowen Wang

Diploid Thinopyrum elongatum (EE, 2n = 2x = 14) and related polyploid species constitute an important gene pool for improving Triticeae grain and forage crops. However, the genomic and molecular marker resources are generally poor for these species. To aid the genetic, molecular, breeding and ecological studies involving Thinopyrum species, we developed a strategy for mining and validating E‐genome‐specific SNPs using Th. elongatum and common wheat (Triticum aestivum, AABBDD, 2n = 6x = 42) as experimental materials. By comparing the transcriptomes between Chinese Spring (CS, a common wheat variety) and the CS‐Th. elongatum octoploid, 35,193 candidate SNPs between E genome genes and their common wheat orthologs were computed. Through comparative genomic analysis, these SNPs were putatively assigned to the seven individual E genome chromosomes. Among 420 randomly selected SNPs, 373 could be validated. Thus, approximately 89% of the mined SNPs may be authentic with respect to their polymorphism and chromosomal location. Using 14 such SNPs as molecular markers, complex E genome introgressions were reliably identified in 78 common wheat‐Th. elongatum hybrids, and the structural feature of a novel recombinant chromosome formed by 6E and 7E was revealed. Finally, based on testing 33 SNPs assigned to chromosome 3E in multiple genotypes of Th. elongatum, Pseudoroegneria stipifolia (carrying the St genome related to E) and common wheat, we suggest that some of the SNP markers may also be applicable for genetic studies within and among the Thinopyrum species (populations) carrying E and/or St genomes in the future.


Plant Journal | 2018

Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits

Yi Zhang; Da Li; Dingbo Zhang; Xiaoge Zhao; Xuemin Cao; Lingli Dong; Jinxing Liu; Kunling Chen; Huawei Zhang; Caixia Gao; Daowen Wang

GW2 is emerging as a key genetic determinant of grain weight in cereal crops; it has three homoeologs (TaGW2-A1, -B1 and -D1) in hexaploid common wheat (Triticum aestivum L.). Here, by analyzing the gene editing mutants that lack one (B1 or D1), two (B1 and D1) or all three (A1, B1 and D1) homoeologs of TaGW2, several insights are gained into the functions of TaGW2-B1 and -D1 in common wheat grain traits. First, both TaGW2-B1 and -D1 affect thousand-grain weight (TGW) by influencing grain width and length, but the effect conferred by TaGW2-B1 is stronger than that of TaGW2-D1. Second, there exists functional interaction between TaGW2 homoeologs because the TGW increase shown by a double mutant (lacking B1 and D1) was substantially larger than that of their single mutants. Third, both TaGW2-B1 and -D1 modulate cell number and length in the outer pericarp of developing grains, with TaGW2-B1 being more potent. Finally, TaGW2 homoeologs also affect grain protein content as this parameter was generally increased in the mutants, especially in the lines lacking two or three homoeologs. Consistent with this finding, two wheat end-use quality-related parameters, flour protein content and gluten strength, were considerably elevated in the mutants. Collectively, our data shed light on functional difference between and additive interaction of TaGW2 homoeologs in the genetic control of grain weight and protein content traits in common wheat, which may accelerate further research on this important gene and its application in wheat improvement.


Scientific Reports | 2016

A novel allele of L-galactono-1,4-lactone dehydrogenase is associated with enhanced drought tolerance through affecting stomatal aperture in common wheat

Juncheng Zhang; Bin Li; Yanping Yang; Peiyuan Mu; Weiqiang Qian; Lingli Dong; Kunpu Zhang; Xin Liu; Huanju Qin; Hong-Qing Ling; Daowen Wang

In higher plants, L-galactono-1,4-lactone dehydrogenase (GLDH) plays important roles in ascorbic acid (AsA) biosynthesis and assembly of respiration complex I. Here we report three homoeologous genes (TaGLDH-A1, -B1 and -D1) encoding common wheat GLDH isozymes and a unique allelic variant (TaGLDH-A1b) associated with enhanced drought tolerance. TaGLDH-A1, -B1 and -D1 were located on chromosomes 5A, 5B and 5D, respectively, and their transcripts were found in multiple organs. The three homoeologs each conferred increased GLDH activity when ectopically expressed in tobacco. Decreasing TaGLDH expression in wheat significantly reduced GLDH activity and AsA content. TaGLDH-A1b differed from wild type allele TaGLDH-A1a by an in-frame deletion of three nucleotides. TaGLDH-A1b was biochemically less active than TaGLDH-A1a, and the total GLDH activity levels were generally lower in the cultivars carrying TaGLDH-A1b relative to those with TaGLDH-A1a. Interestingly, TaGLDH-A1b cultivars showed stronger water deficiency tolerance than TaGLDH-A1a cultivars, and TaGLDH-A1b co-segregated with decreased leaf water loss in a F2 population. Finally, TaGLDH-A1b cultivars generally exhibited smaller leaf stomatal aperture than TaGLDH-A1a varieties in control or water deficiency environments. Our work provides new information on GLDH genes and function in higher plants. TaGLDH-A1b is likely useful for further studying and improving wheat tolerance to drought stress.


Theoretical and Applied Genetics | 2007

Physical mapping and identification of a candidate for the leaf rust resistance gene Lr1 of wheat

Jiwen Qiu; Anita Christina Schürch; Nabila Yahiaoui; Lingli Dong; Huajie Fan; Zhongjuan Zhang; Beat Keller; Hong-Qing Ling

Collaboration


Dive into the Lingli Dong's collaboration.

Top Co-Authors

Avatar

Daowen Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Kunpu Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yiwen Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hong-Qing Ling

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Huanju Qin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xin Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhenying Dong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Juncheng Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Da Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Huajie Fan

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge