Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lingmei Ding is active.

Publication


Featured researches published by Lingmei Ding.


Cell | 2005

AP-3 Directs the Intracellular Trafficking of HIV-1 Gag and Plays a Key Role in Particle Assembly

Xinhong Dong; Hua Li; Aaron Derdowski; Lingmei Ding; Atuhani Burnett; Xuemin Chen; Timothy R. Peters; Terence S. Dermody; Elvin Woodruff; Jaang-Jiun Wang; Paul Spearman

Gag proteins direct the process of retroviral particle assembly and form the major protein constituents of the viral core. The matrix region of the HIV-1 Gag polyprotein plays a critical role in the transport of Gag to the plasma membrane assembly site. Recent evidence indicates that Gag trafficking to late endosomal compartments, including multivesicular bodies, occurs prior to viral particle budding from the plasma membrane. Here we demonstrate that the matrix region of HIV-1 Gag interacts directly with the delta subunit of the AP-3 complex, and that this interaction plays an important functional role in particle assembly. Disruption of this interaction eliminated Gag trafficking to multivesicular bodies and diminished HIV particle formation. These studies illuminate an early step in retroviral particle assembly and provide evidence that the trafficking of Gag to late endosomes is part of a productive particle assembly pathway.


Journal of Virology | 2004

A Novel Fluorescence Resonance Energy Transfer Assay Demonstrates that the Human Immunodeficiency Virus Type 1 Pr55Gag I Domain Mediates Gag-Gag Interactions

Aaron Derdowski; Lingmei Ding; Paul Spearman

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) assembly takes place at the plasma membrane of cells and is directed by the Pr55Gag polyprotein (Gag). One of the essential steps in the assembly process is the multimerization of Gag. We have developed a novel fluorescence resonance energy transfer (FRET) assay for the detection of protein-protein interactions between Gag molecules. We demonstrate that Gag multimerization takes place primarily on cellular membranes, with the majority of these interactions occurring on the plasma membrane. However, distinct sites of Gag-Gag interaction are also present at punctate intracellular locations. The I domain is a functional assembly domain within the nucleocapsid region of Gag that affects particle density, the subcellular localization of Gag, and the formation of detergent-resistant Gag protein complexes. Results from this study provide evidence that the I domain mediates Gag-Gag interactions. Using Gag-fluorescent protein fusion constructs that were previously shown to define the minimal I domain within HIV-1 Pr55Gag, we show by FRET techniques that protein-protein interactions are greatly diminished when Gag proteins lacking the I domain are expressed. Gag-Tsg101 interactions are also seen in living cells and result in a shift of Tsg101 to the plasma membrane. The results within this study provide direct evidence that the I domain mediates protein-protein interactions between Gag molecules. Furthermore, this study establishes FRET as a powerful tool for the detection of protein-protein interactions involved in retrovirus assembly.


Journal of Virology | 2003

Independent Segregation of Human Immunodeficiency Virus Type 1 Gag Protein Complexes and Lipid Rafts

Lingmei Ding; Aaron Derdowski; Jaang-Jiun Wang; Paul Spearman

ABSTRACT Formation of human immunodeficiency virus type 1 (HIV-1) particles takes place at the plasma membrane of cells and is directed by the Pr55Gag polyprotein. A functional assembly domain (the M domain) within the N-terminal portion of Pr55Gag mediates the interaction of Gag with cellular membranes. However, the determinants that provide specificity for assembly on the plasma membrane, as opposed to intracellular membranes, have not been identified. Recently, it was reported that Pr55Gag interacts with lipid raft microdomains of the plasma membrane. We sought to identify the domains within Pr55Gag that contribute to lipid raft association of Gag. Here we demonstrate that the I domain is required for interaction with detergent-resistant membrane fractions (DRMs). Mutation of key I-domain residues or loss of myristylation abrogated the association of Gag with DRMs. Thus, the I domain and the M domain combine to mediate Gag-lipid raft interactions as defined by these biochemical criteria. However, Gag protein complexes defined by flotation studies were much denser than classical lipid rafts, failed to incorporate classical lipid raft marker proteins, and were not disrupted by cholesterol extraction. Large sheets of Gag protein were identified in DRM fractions upon examination by electron microscopy. These results indicate that HIV-1 Pr55Gag forms detergent-resistant complexes at the cellular periphery that are distinct from lipid raft microdomains.


Journal of Virology | 2007

Myristoylation Is Required for Human Immunodeficiency Virus Type 1 Gag-Gag Multimerization in Mammalian Cells

Hua Li; Jun Dou; Lingmei Ding; Paul Spearman

ABSTRACT The Gag protein of human immunodeficiency virus type 1 directs the virion assembly process. Gag proteins must extensively multimerize during the formation of the spherical immature virion shell. In vitro, virus-like particles can be generated from Gag proteins that lack the N-terminal myristic acid modification or the nucleocapsid (NC) protein. The precise requirements for Gag-Gag multimerization under conditions present in mammalian cells, however, have not been fully elucidated. In this study, a Gag-Gag multimerization assay measuring fluorescence resonance energy transfer was employed to define the Gag domains that are essential for homomultimerization. Three essential components were identified: protein-protein interactions contributed by residues within both the N- and C-terminal domains of capsid (CA), basic residues in NC, and the presence of myristic acid. The requirement of myristic acid for multimerization was reproduced using the heterologous myristoylation sequence from v-src. Only when a leucine zipper dimerization motif was placed in the position of NC was a nonmyristoylated Gag protein able to multimerize. These results support a three-component model for Gag-Gag multimerization that includes membrane interactions mediated by the myristoylated N terminus of Gag, protein-protein interactions between CA domains, and NC-RNA interactions.


Nature Medicine | 2008

Identification of calcium-modulating cyclophilin ligand as a human host restriction to HIV-1 release overcome by Vpu

Vasundhara Varthakavi; Ellen Heimann-Nichols; Rita M. Smith; Yuehui Sun; Richard J. Bram; Showkat Ali; Jeremy Rose; Lingmei Ding; Paul Spearman

The HIV-1 Vpu protein is required for efficient viral release from human cells. For HIV-2, the envelope (Env) protein replaces the role of Vpu. Both Vpu and HIV-2 Env enhance virus release by counteracting an innate host-cell block within human cells that is absent in African green monkey (AGM) cells. Here we identify calcium-modulating cyclophilin ligand (CAML) as a Vpu-interacting host factor that restricts HIV-1 release. Expression of human CAML (encoded by CAMLG) in AGM cells conferred a strong restriction of virus release that was reversed by Vpu and HIV-2 Env, suggesting that CAML is the mechanistic link between these two viral regulators. Depletion of CAML in human cells eliminated the need for Vpu in enhancing HIV-1 and murine leukemia virus release. These results point to CAML as a Vpu-sensitive host restriction factor that inhibits HIV release from human cells. The ability of CAML to inhibit virus release should illuminate new therapeutic strategies against HIV.


PLOS Pathogens | 2013

Rab11-FIP1C and Rab14 Direct Plasma Membrane Sorting and Particle Incorporation of the HIV-1 Envelope Glycoprotein Complex

Mingli Qi; Janice A. Williams; Hin Chu; Xuemin Chen; Jaang Jiun Wang; Lingmei Ding; Ehiole Akhirome; Xiaoyun Wen; Lynne A. Lapierre; James R. Goldenring; Paul Spearman

The incorporation of the envelope glycoprotein complex (Env) onto the developing particle is a crucial step in the HIV-1 lifecycle. The long cytoplasmic tail (CT) of Env is required for the incorporation of Env onto HIV particles in T cells and macrophages. Here we identify the Rab11a-FIP1C/RCP protein as an essential cofactor for HIV-1 Env incorporation onto particles in relevant human cells. Depletion of FIP1C reduced Env incorporation in a cytoplasmic tail-dependent manner, and was rescued by replenishment of FIP1C. FIP1C was redistributed out of the endosomal recycling complex to the plasma membrane by wild type Env protein but not by CT-truncated Env. Rab14 was required for HIV-1 Env incorporation, and FIP1C mutants incapable of binding Rab14 failed to rescue Env incorporation. Expression of FIP1C and Rab14 led to an enhancement of Env incorporation, indicating that these trafficking factors are normally limiting for CT-dependent Env incorporation onto particles. These findings support a model for HIV-1 Env incorporation in which specific targeting to the particle assembly microdomain on the plasma membrane is mediated by FIP1C and Rab14.


Cell Host & Microbe | 2012

Tetherin/BST-2 Is Essential for the Formation of the Intracellular Virus-Containing Compartment in HIV-Infected Macrophages

Hin Chu; Jaang-Jiun Wang; Mingli Qi; Jeong-Joong Yoon; Xuemin Chen; Xiaoyun Wen; Jason Hammonds; Lingmei Ding; Paul Spearman

HIV-1 assembly and release occur at the plasma membrane in T lymphocytes, while intracellular sites of virus assembly or accumulation are apparent in macrophages. The host protein tetherin (BST-2) inhibits HIV release from the plasma membrane by retaining viral particles at the cell surface, but the role of tetherin at intracellular HIV assembly sites is unclear. We determined that tetherin is significantly upregulated upon macrophage infection and localizes to an intracellular virus-containing compartment (VCC). Tetherin localized at the virus-VCC membrane interface, suggesting that tetherin physically tethers virions in VCCs. Tetherin knockdown diminished and redistributed VCCs within macrophages and promoted HIV release and cell-cell transmission. The HIV Vpu protein, which downregulates tetherin from the plasma membrane, did not fully overcome tetherin-mediated restriction of particle release in macrophages. Thus, tetherin is essential for VCC formation and may account for morphologic differences in the apparent HIV assembly sites in macrophages versus T cells.


Virology | 2008

Distinct viral determinants for the packaging of human cytidine deaminases APOBEC3G and APOBEC3C

Tao Wang; Wenyan Zhang; Chunjuan Tian; Bindong Liu; Yunkai Yu; Lingmei Ding; Paul Spearman; Xiao Fang Yu

Human APOBEC3G and other APOBEC3 cytidine deaminases inhibit a variety of retroviruses, including Vif-deficient HIV-1. These host proteins are packaged into viral particles and inhibit the replication of virus in new target cells. A3G and A3F are known to be efficiently packaged into HIV-1 virions by binding to 7SL RNA through the Gag NC domain; however, the packaging mechanisms of other APOBEC3 proteins are poorly defined. We have now demonstrated that APOBEC3C (A3C) can be efficiently packaged into HIV-1 virions that are deficient for viral genomic RNA. Inhibition of the encapsidation of 7SL RNA into HIV-1 virions blocked the packaging of A3G, but not A3C. While the NC domain is required for efficient packaging of A3G, deletion of this domain had little effect on A3C packaging into HIV-1 Gag particles. A3C interacted with HIV-1 Gag which was MA domain-dependent and RNA-dependent. Deletion of the MA domain of HIV-1 Gag inhibited A3C but not A3G packaging into HIV-1 Gag particles. Thus, A3G and A3C have evolved to use distinct mechanisms for targeting retroviruses.


Journal of Virology | 2014

ROCK1 and LIM Kinase Modulate Retrovirus Particle Release and Cell-Cell Transmission Events

Xiaoyun Wen; Lingmei Ding; Jaang Jiun Wang; Mingli Qi; Jason Hammonds; Hin Chu; Xuemin Chen; Eric Hunter; Paul Spearman

ABSTRACT The assembly and release of retroviruses from the host cells require dynamic interactions between viral structural proteins and a variety of cellular factors. It has been long speculated that the actin cytoskeleton is involved in retrovirus production, and actin and actin-related proteins are enriched in HIV-1 virions. However, the specific role of actin in retrovirus assembly and release remains unknown. Here we identified LIM kinase 1 (LIMK1) as a cellular factor regulating HIV-1 and Mason-Pfizer monkey virus (M-PMV) particle release. Depletion of LIMK1 reduced not only particle output but also virus cell-cell transmission and was rescued by LIMK1 replenishment. Depletion of the upstream LIMK1 regulator ROCK1 inhibited particle release, as did a competitive peptide inhibitor of LIMK1 activity that prevented cofilin phosphorylation. Disruption of either ROCK1 or LIMK1 led to enhanced particle accumulation on the plasma membrane as revealed by total internal reflection fluorescence microscopy (TIRFM). Electron microscopy demonstrated a block to particle release, with clusters of fully mature particles on the surface of the cells. Our studies support a model in which ROCK1- and LIMK1-regulated phosphorylation of cofilin and subsequent local disruption of dynamic actin turnover play a role in retrovirus release from host cells and in cell-cell transmission events. IMPORTANCE Viruses often interact with the cellular cytoskeletal machinery in order to deliver their components to the site of assembly and budding. This study indicates that a key regulator of actin dynamics at the plasma membrane, LIM kinase, is important for the release of viral particles for HIV as well as for particle release by a distantly related retrovirus, Mason-Pfizer monkey virus. Moreover, disruption of LIM kinase greatly diminished the spread of HIV from cell to cell. These findings suggest that LIM kinase and its dynamic modulation of the actin cytoskeleton in the cell may be an important host factor for the production, release, and transmission of retroviruses.


Journal of Virology | 2012

The tetherin/BST-2 coiled-coil ectodomain mediates plasma membrane microdomain localization and restriction of particle release.

Jason Hammonds; Lingmei Ding; Hin Chu; Ken Geller; Andrew Robbins; Jaang-Jiun Wang; Paul Spearman

ABSTRACT Tetherin/BST-2 forms a proteinaceous tether that restricts the release of a number of enveloped viruses following viral budding. Tetherin is an unusual membrane glycoprotein with two membrane anchors and an extended coiled-coil ectodomain. The ectodomain itself forms an imperfect coil that may undergo conformational shifts to accommodate membrane dynamics during the budding process. The coiled-coil ectodomain is required for restriction, but precisely how it contributes to the restriction of particle release remains under investigation. In this study, mutagenesis of the ectodomain was used to further define the role of the coiled-coil ectodomain in restriction. Scanning mutagenesis throughout much of the ectodomain failed to disrupt the ability of tetherin to restrict HIV particle release, indicating a high degree of plasticity. Targeted N- and C-terminal substitutions disrupting the coiled coil led to both a loss of restriction and an alteration of subcellular distribution. Two ectodomain mutants deficient in restriction were endocytosed inefficiently, and the levels of these mutants on the cell surface were significantly enhanced. An ectodomain mutant with four targeted serine substitutions (4S) failed to cluster in membrane microdomains, was deficient in restriction of particle release, and exhibited an increase in lateral mobility on the membrane. These results suggest that the tetherin ectodomain contributes to microdomain localization and to constrained lateral mobility. We propose that focal clustering of tetherin via ectodomain interactions plays a role in restriction of particle release.

Collaboration


Dive into the Lingmei Ding's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hin Chu

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge