Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linsey C. Marr is active.

Publication


Featured researches published by Linsey C. Marr.


Neuron | 1999

Profilin and the Abl Tyrosine Kinase Are Required for Motor Axon Outgrowth in the Drosophila Embryo

Zachary P. Wills; Linsey C. Marr; Kai Zinn; Corey S. Goodman; David Van Vactor

The ability of neuronal growth cones to be guided by extracellular cues requires intimate communication between signal transduction systems and the dynamic actin-based cytoskeleton at the leading edge. Profilin, a small, actin-binding protein, has been proposed to be a regulator of the cell motility machinery at leading edge membranes. However, its requirement in the developing nervous system has been unknown. Profilin associates with members of the Enabled family of proteins, suggesting that Profilin might link Abl function to the cytoskeleton. Here, genetic analysis in Drosophila is used to demonstrate that mutations in Profilin (chickadee) and Abl (abl) display an identical growth cone arrest phenotype for axons of intersegmental nerve b (ISNb). Moreover, the phenotype of a double mutant suggests that these components function together to control axonal outgrowth.


Aerosol Science and Technology | 2010

Soot Particle Studies—Instrument Inter-Comparison—Project Overview

Eben S. Cross; Timothy B. Onasch; Adam Ahern; William Wrobel; Jay G. Slowik; Jason S. Olfert; D. A. Lack; Paola Massoli; Christopher D. Cappa; Joshua P. Schwarz; J. Ryan Spackman; D. W. Fahey; Arthur J. Sedlacek; A. Trimborn; John T. Jayne; Andrew Freedman; Leah R. Williams; Nga L. Ng; Claudio Mazzoleni; Manvendra K. Dubey; Benjamin T. Brem; Greg Kok; R. Subramanian; Steffen Freitag; Antony D. Clarke; D. A. Thornhill; Linsey C. Marr; Charles E. Kolb; Douglas R. Worsnop; P. Davidovits

An inter-comparison study of instruments designed to measure the microphysical and optical properties of soot particles was completed. The following mass-based instruments were tested: Couette Centrifugal Particle Mass Analyzer (CPMA), Time-of-Flight Aerosol Mass Spectrometer—Scanning Mobility Particle Sizer (AMS-SMPS), Single Particle Soot Photometer (SP2), Soot Particle-Aerosol Mass Spectrometer (SP-AMS) and Photoelectric Aerosol Sensor (PAS2000CE). Optical instruments measured absorption (photoacoustic, interferometric, and filter-based), scattering (in situ), and extinction (light attenuation within an optical cavity). The study covered an experimental matrix consisting of 318 runs that systematically tested the performance of instruments across a range of parameters including: fuel equivalence ratio (1.8 ≤ φ ≤ 5), particle shape (mass-mobility exponent ( D fm ), 2.0 ≤ D fm ≤ 3.0), particle mobility size (30 ≤ d m ≤ 300 nm), black carbon mass (0.07 ≤ m BC ≤ 4.2 fg) and particle chemical composition. In selected runs, particles were coated with sulfuric acid or dioctyl sebacate (DOS) (0.5 ≤ Δ r ve ≤ 201 nm) where Δ r ve is the change in the volume equivalent radius due to the coating material. The effect of non-absorbing coatings on instrument response was determined. Changes in the morphology of fractal soot particles were monitored during coating and denuding processes and the effect of particle shape on instrument response was determined. The combination of optical and mass based measurements was used to determine the mass specific absorption coefficient for denuded soot particles. The single scattering albedo of the particles was also measured. An overview of the experiments and sample results are presented.


Journal of The Air & Waste Management Association | 2010

Environmental and Human Health Risks of Aerosolized Silver Nanoparticles

Marina Eller Quadros; Linsey C. Marr

Abstract Silver nanoparticles (AgNPs) are gaining attention from the academic and regulatory communities, not only because of their antimicrobial effects and subsequent product applications, but also because of their potential health and environmental risks. Whereas AgNPs in the aqueous phase are under intensive study, those in the atmosphere have been largely overlooked, although it is well established that inhalation of nanoparticles is associated with adverse health effects. This review summarizes the present state of knowledge concerning airborne AgNPs to shed light on the possible environmental exposure scenarios that may accompany the production and popularization of silver nanotechnology consumer products. The current understanding of the toxicity of AgNPs points toward a potential threat via the inhalation exposure route. Nano-particle size, chemical composition, crystal structure, surface area, and the rate of silver ion release are expected to be important variables in determining toxicity. Possible routes of aerosolization of AgNPs from the production, use, and disposal of existing consumer products are presented. It is estimated that approximately 14% of silver nanotechnology products that have been inventoried could potentially release silver particles into the air during use, whether through spraying, dry powder dispersion, or other methods. In laboratory and industrial settings, six methods of aerosolization have been used to produce airborne AgNPs: spray atomization, liquid-flame spray, thermal evaporation-condensation, chemical vaporization, dry powder dispersion, and manual handling. Fundamental uncertainties remain about the fate of AgNPs in the environment, their short- and long-term health effects, and the specific physical and chemical properties of airborne particles that are responsible for health effects. Thus, to better understand the risks associated with silver nanotechnology, it is vital to understand the conditions under which AgNPs could become airborne.


Journal of Geophysical Research | 2000

Influence of advection on measurements of the net ecosystem‐atmosphere exchange of CO2 from a very tall tower

Chuixiang Yi; K. J. Davis; Peter S. Bakwin; Bernard W Berger; Linsey C. Marr

In most studies of the net ecosystem-atmosphere exchange of CO2 (NEE) using tower-based eddy covariance (EC) systems it has been assumed that advection is negligible. In this study we use a scalar conservation budget method to estimate the contribution of advection to NEE measurements from a very tall tower in northern Wisconsin. We examine data for June-August 1997. Measured NEE0, calculated as the sum of the EC flux plus the rate of change of storage below the EC measurement level, is expected to be constant with measurement height, and we take the differences between levels as a measure of advection. We find that the average difference in total advection DFCadtot between 30 and 122 m is as large as 6 mmol m 22 s 21 during the morning transition from stable to convective conditions and the average difference DFCadtot between 122 and 396 m is as large as 4 mmol m 22 s 21 during daytime. For the month of July, advection between 30 and 122 m is 27% of the diurnally integrated NEE0 at 122 m, and advection between 122 and 396 m accounts for 5% of the NEE0 observed at 396 m. The observed differences of advection often have significant correlation with the vertical integral of wind speed within the same layer. This indicates that the horizontal advection contribution to NEE could be significant. Direct observations of the vertical gradient in CO2 show that DFCadtot cannot be explained by vertical advection alone. It is hypothesized that differing flux footprints and pooling of CO2 in the heterogeneous landscape causes the advection contribution. The magnitudes of the total advection component FCadtot of NEE at the 30 m level are roughly estimated by a linear extrapolation. A peak in F Cadtot at 30 m of ;3 mmol m 22 s 21 during the morning transition is predicted for all three months. The July integrated F Cadtot is estimated to be 10% of the diurnally integrated NEE0 at 30 m.


Environmental Science & Technology | 2013

Release of Silver from Nanotechnology-Based Consumer Products for Children

Marina Eller Quadros; Raymond Pierson; Nicolle S. Tulve; Robert D. Willis; Kim R. Rogers; Treye A. Thomas; Linsey C. Marr

We assessed the potential for childrens exposure to bioavailable silver during the realistic use of selected nanotechnology-based consumer products (plush toy, fabric products, breast milk storage bags, sippy cups, cleaning products, humidifiers, and humidifier accessory). We measured the release of ionic and particulate silver from products into water, orange juice, milk formula, synthetic saliva, sweat, and urine (1:50 product to liquid mass ratio); into air; and onto dermal wipes. Of the liquid media, sweat and urine yielded the highest amount of silver release, up to 38% of the silver mass in products; tap water yielded the lowest amount, ≤1.5%. Leaching from a blanket into sweat plateaued within 5 min, with less silver released after washing. Between 0.3 and 23 μg m(-2) of silver transferred from products to wipes. Aerosol concentrations were not significantly elevated during product use. Fabrics, a plush toy, and cleaning products were most likely to release silver. Silver leached mainly via dissolution and was facilitated in media with high salt concentrations. Levels of silver to which children may potentially be exposed during the normal use of these consumer products is predicted to be low, and bioavailable silver is expected to be in ionic rather than particulate form.


Journal of the Royal Society Interface | 2011

Concentrations and size distributions of airborne influenza A viruses measured indoors at a health centre, a day-care centre and on aeroplanes

Wan Yang; Subbiah Elankumaran; Linsey C. Marr

The relative importance of the aerosol transmission route for influenza remains contentious. To determine the potential for influenza to spread via the aerosol route, we measured the size distribution of airborne influenza A viruses. We collected size-segregated aerosol samples during the 2009–2010 flu season in a health centre, a day-care facility and onboard aeroplanes. Filter extracts were analysed using quantitative reverse transcriptase polymerase chain reaction. Half of the 16 samples were positive, and their total virus concentrations ranged from 5800 to 37 000 genome copies m−3. On average, 64 per cent of the viral genome copies were associated with fine particles smaller than 2.5 µm, which can remain suspended for hours. Modelling of virus concentrations indoors suggested a source strength of 1.6 ± 1.2 × 105 genome copies m−3 air h−1 and a deposition flux onto surfaces of 13 ± 7 genome copies m−2 h−1 by Brownian motion. Over 1 hour, the inhalation dose was estimated to be 30 ± 18 median tissue culture infectious dose (TCID50), adequate to induce infection. These results provide quantitative support for the idea that the aerosol route could be an important mode of influenza transmission.


PLOS ONE | 2011

Dynamics of Airborne influenza A viruses indoors and dependence on humidity

Wan Yang; Linsey C. Marr

There is mounting evidence that the aerosol transmission route plays a significant role in the spread of influenza in temperate regions and that the efficiency of this route depends on humidity. Nevertheless, the precise mechanisms by which humidity might influence transmissibility via the aerosol route have not been elucidated. We hypothesize that airborne concentrations of infectious influenza A viruses (IAVs) vary with humidity through its influence on virus inactivation rate and respiratory droplet size. To gain insight into the mechanisms by which humidity might influence aerosol transmission, we modeled the size distribution and dynamics of IAVs emitted from a cough in typical residential and public settings over a relative humidity (RH) range of 10–90%. The model incorporates the size transformation of virus-containing droplets due to evaporation and then removal by gravitational settling, ventilation, and virus inactivation. The predicted concentration of infectious IAVs in air is 2.4 times higher at 10% RH than at 90% RH after 10 min in a residential setting, and this ratio grows over time. Settling is important for removal of large droplets containing large amounts of IAVs, while ventilation and inactivation are relatively more important for removal of IAVs associated with droplets <5 µm. The inactivation rate increases linearly with RH; at the highest RH, inactivation can remove up to 28% of IAVs in 10 min. Humidity is an important variable in aerosol transmission of IAVs because it both induces droplet size transformation and affects IAV inactivation rates. Our model advances a mechanistic understanding of the aerosol transmission route, and results complement recent studies on the relationship between humidity and influenzas seasonality. Maintaining a high indoor RH and ventilation rate may help reduce chances of IAV infection.


Aerosol Science and Technology | 2005

Particulate Emissions from in-use Commercial Aircraft

Scott C. Herndon; Timothy B. Onasch; Brian P. Frank; Linsey C. Marr; John T. Jayne; Manjula R. Canagaratna; Jillian Grygas; Thomas Lanni; Bruce E. Anderson; D. R. Worsnop; Richard C. Miake-Lye

Particulate emission indices (per kg fuel) have been determined by sampling the advected plumes of in-use commercial aircraft at two different airports using a novel approach. Differences are observed in the number, magnitude, and composition of the particle emissions between idle and take-off. At the first airport, Electrical Low Pressure Impactor (ELPI) data indicate that number based emission indices (EI n ) vary by an order of magnitude for take-off plumes from different aircraft. Additionally, EI n values for idle plumes are greater than take-off. At the second airport, EI n values derived from condensation particle counter (CPC) measurements span ∼ an order of magnitude (3–50 × 10 15 particles per kg fuel). The median values of the idle and take-off plumes were 1.8 × 10 16 and 7.6 × 10 15 particles per kg fuel, respectively. For take-off plumes, the magnitude of the particulate emission index is not correlated with NO x at either airport. The surface properties of the particulate emissions in take-off and idle plumes differ significantly as measured by diffusion charging (DC) and photoelectric aerosol sensor (PAS) instruments. Results indicate that take-off plumes are characterized by particles with photoelectric-active surfaces, presumably elemental carbon, whereas idle plumes are composed of non-photoelectric-active constituents and coated soot particles. Measurements of the particulate size distribution (ELPI) show evidence for two modes, one at ∼ 90 nm aerodynamic diameter and a second mode at or below the instrument cutoff ( < 30 nm).


PLOS ONE | 2012

Relationship between Humidity and Influenza A Viability in Droplets and Implications for Influenza’s Seasonality

Wan Yang; Subbiah Elankumaran; Linsey C. Marr

Humidity has been associated with influenza’s seasonality, but the mechanisms underlying the relationship remain unclear. There is no consistent explanation for influenza’s transmission patterns that applies to both temperate and tropical regions. This study aimed to determine the relationship between ambient humidity and viability of the influenza A virus (IAV) during transmission between hosts and to explain the mechanisms underlying it. We measured the viability of IAV in droplets consisting of various model media, chosen to isolate effects of salts and proteins found in respiratory fluid, and in human mucus, at relative humidities (RH) ranging from 17% to 100%. In all media and mucus, viability was highest when RH was either close to 100% or below ∼50%. When RH decreased from 84% to 50%, the relationship between viability and RH depended on droplet composition: viability decreased in saline solutions, did not change significantly in solutions supplemented with proteins, and increased dramatically in mucus. Additionally, viral decay increased linearly with salt concentration in saline solutions but not when they were supplemented with proteins. There appear to be three regimes of IAV viability in droplets, defined by humidity: physiological conditions (∼100% RH) with high viability, concentrated conditions (50% to near 100% RH) with lower viability depending on the composition of media, and dry conditions (<50% RH) with high viability. This paradigm could help resolve conflicting findings in the literature on the relationship between IAV viability in aerosols and humidity, and results in human mucus could help explain influenza’s seasonality in different regions.


International Journal of Hygiene and Environmental Health | 2015

Characterization of silver nanoparticles in selected consumer products and its relevance for predicting children’s potential exposures

Nicolle S. Tulve; Aleksandr B. Stefaniak; Marina E. Vance; Kim R. Rogers; Samuel K. Mwilu; Ryan F. LeBouf; Diane Schwegler-Berry; Robert D. Willis; Treye A. Thomas; Linsey C. Marr

Due to their antifungal, antibacterial, antiviral, and antimicrobial properties, silver nanoparticles (AgNPs) are used in consumer products intended for use by children or in the home. Children may be especially affected by the normal use of consumer products because of their physiological functions, developmental stage, and activities and behaviors. Despite much research to date, childrens potential exposures to AgNPs are not well characterized. Our objectives were to characterize selected consumer products containing AgNPs and to use the data to estimate a childs potential non-dietary ingestion exposure. We identified and cataloged 165 consumer products claiming to contain AgNPs that may be used by or near children or found in the home. Nineteen products (textile, liquid, plastic) were selected for further analysis. We developed a tiered analytical approach to determine silver content, form (particulate or ionic), size, morphology, agglomeration state, and composition. Silver was detected in all products except one sippy cup body. Among products in a given category, silver mass contributions were highly variable and not always uniformly distributed within products, highlighting the need to sample multiple areas of a product. Electron microscopy confirmed the presence of AgNPs. Using this data, a childs potential non-dietary ingestion exposure to AgNPs when drinking milk formula from a sippy cup is 1.53 μg Ag/kg. Additional research is needed to understand the number and types of consumer products containing silver and the concentrations of silver in these products in order to more accurately predict childrens potential aggregate and cumulative exposures to AgNPs.

Collaboration


Dive into the Linsey C. Marr's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel A. Zavala

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

John T. Jayne

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mario J. Molina

Universidad Autónoma de Ciudad Juárez

View shared research outputs
Top Co-Authors

Avatar

Douglas R. Worsnop

Finnish Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge