Linus Sandegren
Uppsala University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Linus Sandegren.
PLOS Pathogens | 2011
Erik Gullberg; Sha Cao; Otto G. Berg; Carolina Ilbäck; Linus Sandegren; Diarmaid Hughes; Dan I. Andersson
The widespread use of antibiotics is selecting for a variety of resistance mechanisms that seriously challenge our ability to treat bacterial infections. Resistant bacteria can be selected at the high concentrations of antibiotics used therapeutically, but what role the much lower antibiotic concentrations present in many environments plays in selection remains largely unclear. Here we show using highly sensitive competition experiments that selection of resistant bacteria occurs at extremely low antibiotic concentrations. Thus, for three clinically important antibiotics, drug concentrations up to several hundred-fold below the minimal inhibitory concentration of susceptible bacteria could enrich for resistant bacteria, even when present at a very low initial fraction. We also show that de novo mutants can be selected at sub-MIC concentrations of antibiotics, and we provide a mathematical model predicting how rapidly such mutants would take over in a susceptible population. These results add another dimension to the evolution of resistance and suggest that the low antibiotic concentrations found in many natural environments are important for enrichment and maintenance of resistance in bacterial populations.
Nature Reviews Microbiology | 2009
Linus Sandegren; Dan I. Andersson
Recent data suggest that, in response to the presence of antibiotics, gene duplication and amplification (GDA) constitutes an important adaptive mechanism in bacteria. For example, resistance to sulphonamide, trimethoprim and β-lactams can be conferred by increased gene dosage through GDA of antibiotic hydrolytic enzymes, target enzymes or efflux pumps. Furthermore, most types of antibiotic resistance mechanism are deleterious in the absence of antibiotics, and these fitness costs can be ameliorated by increased gene dosage of limiting functions. In this Review, we highlight the dynamic properties of gene amplifications and describe how they can facilitate adaptive evolution in response to toxic drugs.
Mbio | 2014
Erik Gullberg; Lisa M. Albrecht; Christoffer Karlsson; Linus Sandegren; Dan I. Andersson
ABSTRACT How sublethal levels of antibiotics and heavy metals select for clinically important multidrug resistance plasmids is largely unknown. Carriage of plasmids generally confers substantial fitness costs, implying that for the plasmid-carrying bacteria to be maintained in the population, the plasmid cost needs to be balanced by a selective pressure conferred by, for example, antibiotics or heavy metals. We studied the effects of low levels of antibiotics and heavy metals on the selective maintenance of a 220-kbp extended-spectrum β-lactamase (ESBL) plasmid identified in a hospital outbreak of Klebsiella pneumoniae and Escherichia coli. The concentrations of antibiotics and heavy metals required to maintain plasmid-carrying bacteria, the minimal selective concentrations (MSCs), were in all cases below (almost up to 140-fold) the MIC of the plasmid-free susceptible bacteria. This finding indicates that the very low antibiotic and heavy metal levels found in polluted environments and in treated humans and animals might be sufficiently high to maintain multiresistance plasmids. When resistance genes were moved from the plasmid to the chromosome, the MSC decreased, showing that MSC for a specific resistance conditionally depends on genetic context. This finding suggests that a cost-free resistance could be maintained in a population by an infinitesimally low concentration of antibiotic. By studying the effect of combinations of several compounds, it was observed that for certain combinations of drugs each new compound added lowered the minimal selective concentration of the others. This combination effect could be a significant factor in the selection of multidrug resistance plasmids/bacterial clones in complex multidrug environments. IMPORTANCE Antibiotic resistance is in many pathogenic bacteria caused by genes that are carried on large conjugative plasmids. These plasmids typically contain multiple antibiotic resistance genes as well as genes that confer resistance to biocides and heavy metals. In this report, we show that very low concentrations of single antibiotics and heavy metals or combinations of compounds can select for a large plasmid that carries resistance to aminoglycosides, β-lactams, tetracycline, macrolides, trimethoprim, sulfonamide, silver, copper, and arsenic. Our findings suggest that the low levels of antibiotics and heavy metals present in polluted external environments and in treated animals and humans could allow for selection and enrichment of bacteria with multiresistance plasmids and thereby contribute to the emergence, maintenance, and transmission of antibiotic-resistant disease-causing bacteria. Antibiotic resistance is in many pathogenic bacteria caused by genes that are carried on large conjugative plasmids. These plasmids typically contain multiple antibiotic resistance genes as well as genes that confer resistance to biocides and heavy metals. In this report, we show that very low concentrations of single antibiotics and heavy metals or combinations of compounds can select for a large plasmid that carries resistance to aminoglycosides, β-lactams, tetracycline, macrolides, trimethoprim, sulfonamide, silver, copper, and arsenic. Our findings suggest that the low levels of antibiotics and heavy metals present in polluted external environments and in treated animals and humans could allow for selection and enrichment of bacteria with multiresistance plasmids and thereby contribute to the emergence, maintenance, and transmission of antibiotic-resistant disease-causing bacteria.
Apmis | 2008
Birgitta Lytsy; Linus Sandegren; Eva Tano; Erik Torell; Dan I. Andersson; Åsa Melhus
Between May and December 2005, 64 multidrug‐resistant isolates of Klebsiella pneumoniae were detected from patients admitted to Uppsala University Hospital. This represented a dramatic increase in ESBL‐producing K. pneumoniae compared to previous years. To investigate the epidemiology and to characterize the resistance mechanisms of the isolates, a study was initiated. Antibiotic susceptibility was determined by means of the Etest and the disc diffusion method. Extended‐spectrum beta‐lactamase (ESBL) production was identified by clavulanic acid synergy test and confirmed with PCR amplification followed by DNA sequencing. DNA profiles of the isolates were examined with pulsed‐field gel electrophoresis (PFGE). All isolates were resistant or exhibited reduced susceptibility to cefadroxil, cefuroxime, cefotaxime, ceftazidime, aztreonam, piperacillin/tazobactam, ciprofloxacin, tobramycin, and trimethoprim‐sulfamethoxazole. They produced ESBL of the CTX‐M‐15 type, and the involvement of a single K. pneumoniae clone was shown. This is the first major clonal outbreak of multiresistant ESBL‐producing K. pneumoniae in Scandinavia. The outbreak demonstrates the epidemic potential of enterobacteria containing ESBLs of the CTX‐M type, even in a country with a relatively low selective pressure and a low prevalence of multiresistant bacteria.
Journal of Antimicrobial Chemotherapy | 2008
Linus Sandegren; Anton Lindqvist; Gunnar Kahlmeter; Dan I. Andersson
OBJECTIVES The biological fitness cost of antibiotic resistance is a key parameter in determining the rate of appearance and spread of antibiotic-resistant bacteria. We identified mutations conferring nitrofurantoin resistance and examined their effect on the fitness of clinical Escherichia coli isolates. METHODS By plating bacterial cells on agar plates containing nitrofurantoin, spontaneous nitrofurantoin-resistant E. coli mutants were isolated. The fitness of susceptible and resistant strains was measured as growth rate in the presence and absence of nitrofurantoin in rich culture medium. Time-kill kinetics of the resistant mutants was compared with the susceptible strains. Resistance mutations were identified by DNA sequencing. RESULTS Spontaneous resistant mutants of initially susceptible clinical E. coli appeared with a rate of 10(-7)/cell/generation, and these mutants showed a reduction in the growth rate compared with the susceptible parent strain. Similarly, comparison of a set of susceptible and resistant clinical isolates of E. coli showed that the average growth rate of the resistant mutants was approximately 6% lower than the susceptible strains. Furthermore, the bacterial growth rate in the presence of nitrofurantoin at therapeutic levels was greatly reduced even for nitrofurantoin-resistant mutants. The resistance-conferring mutations were identified in the nsfA and nfsB genes that encode oxygen-insensitive nitroreductases. CONCLUSIONS Nitrofurantoin resistance confers a reduction in fitness in E. coli in the absence of antibiotic. In the presence of therapeutic levels of nitrofurantoin, even resistant mutants are so disturbed in growth that they are probably unable to become enriched and establish an infection.
Upsala Journal of Medical Sciences | 2014
Linus Sandegren
Abstract Human use of antibiotics has driven the selective enrichment of pathogenic bacteria resistant to clinically used drugs. Traditionally, the selection of resistance has been considered to occur mainly at high, therapeutic levels of antibiotics, but we are now beginning to understand better the importance of selection of resistance at low levels of antibiotics. The concentration of an antibiotic varies in different body compartments during treatment, and low concentrations of antibiotics are found in sewage water, soils, and many water environments due to natural production and contamination from human activities. Selection of resistance at non-lethal antibiotic concentrations (below the wild-type minimum inhibitory concentration) occurs due to differences in growth rate at the particular antibiotic concentration between cells with different tolerance levels to the antibiotic. The minimum selective concentration for a particular antibiotic is reached when its reducing effect on growth of the susceptible strain balances the reducing effect (fitness cost) of the resistance determinant in the resistant strain. Recent studies have shown that resistant bacteria can be selected at concentrations several hundred-fold below the lethal concentrations for susceptible cells. Resistant mutants selected at low antibiotic concentrations are generally more fit than those selected at high concentrations but can still be highly resistant. The characteristics of selection at low antibiotic concentrations, the potential clinical problems of this mode of selection, and potential solutions will be discussed.
Journal of Antimicrobial Chemotherapy | 2013
Thomas Tängdén; Marlen Adler; Otto Cars; Linus Sandegren; Elisabeth Löwdin
OBJECTIVES Ertapenem resistance is increasing in Enterobacteriaceae. The production of extended-spectrum β-lactamases (ESBLs) and reduced expression of outer membrane porins are major mechanisms of resistance in ertapenem-resistant Klebsiella pneumoniae. Less is known of ertapenem resistance in Escherichia coli. The aim of this study was to explore the impact of ESBL production in E. coli on the antibacterial activity of ertapenem. METHODS Two E. coli strains, with and without ESBL production, were exposed to ertapenem in vitro for 48 h at concentrations simulating human pharmacokinetics with conventional and higher dosages. RESULTS Isolates with non-susceptibility to ertapenem (MICs 0.75-1.5 mg/L) were detected after five of nine time-kill experiments with the ESBL-producing strain. All of these isolates had ompR mutations, which reduce the expression of outer membrane porins OmpF and OmpC. Higher dosage did not prevent selection of porin-deficient subpopulations. No mutants were detected after experiments with the non-ESBL-producing strain. Compared with other experiments, experiments with ompR mutants detected in endpoint samples showed significantly less bacterial killing after the second dose of ertapenem. Impaired antibacterial activity against E. coli with ESBL production and ompR mutation was also demonstrated in time-kill experiments with static antibiotic concentrations. CONCLUSIONS The combination of ESBL production and porin loss in E. coli can result in reduced susceptibility to ertapenem. Porin-deficient subpopulations frequently emerged in ESBL-producing E. coli during exposure to ertapenem at concentrations simulating human pharmacokinetics. Inappropriate use of ertapenem should be avoided to minimize the risk of selection of ESBL-producing bacteria with reduced susceptibility to carbapenems.
Journal of Antimicrobial Chemotherapy | 2013
Marius Linkevicius; Linus Sandegren; Dan I. Andersson
OBJECTIVES To stepwise select tigecycline-resistant Escherichia coli mutants in vitro, determine the mutation rates, identify the resistance mechanisms, determine the resistance level and cross-resistance to other antibiotic classes, evaluate the fitness costs of tigecycline resistance mechanisms and investigate if the same in vitro-identified target genes were mutated in clinical isolates. METHODS Spontaneous mutants with reduced susceptibility to tigecycline were selected on agar plates supplemented with tigecycline. Resistance levels and cross-resistance were evaluated by performing MIC assays and determining mutation rates using Luria-Delbruck fluctuation tests. Mutant fitness was estimated by measuring exponential growth rates, lag phase and total yield. Illumina whole-genome sequencing was used to identify mutations increasing MICs of tigecycline. RESULTS Spontaneous mutants with reduced susceptibility to tigecycline were selected at a rate of ~10(-8) to 10(-6) per cell per generation; however, the clinical MIC breakpoint was not reached. The resistance level of tigecycline was low and some of the mutants had elevated MICs of hydrophobic drugs (chloramphenicol, erythromycin and novobiocin) or decreased MICs of SOS response inducers (ciprofloxacin and nitrofurantoin). Mutations were identified in efflux regulatory network genes (lon, acrR and marR) or lipopolysaccharide core biosynthesis pathway genes (lpcA, rfaE, rfaD, rfaC and rfaF). Mutations in the same target genes were found in clinical isolates. CONCLUSIONS Tigecycline selects for low-level resistance mutations with relatively high mutation rates and the majority of them come with a substantial fitness cost. Further in vivo experiments are needed to evaluate how these mutations affect bacterial virulence and ability to establish a successful infection.
Emerging Infectious Diseases | 2012
Badrul Hasan; Linus Sandegren; Åsa Melhus; Mirva Drobni; Jorge Hernandez; Jonas Waldenström; Munirul Alam; Björn Olsen
Multidrug resistance was found in 22.7% of Escherichia coli isolates from bird samples in Bangladesh; 30% produced extended-spectrum β-lactamases, including clones of CTX-M genes among wild and domestic birds. Unrestricted use of antimicrobial drugs in feed for domestic birds and the spread of resistance genes to the large bird reservoir in Bangladesh are growing problems.
PLOS Genetics | 2014
Sanna Koskiniemi; Fernando Garza-Sánchez; Linus Sandegren; Julia S. Webb; Bruce A. Braaten; Stephen J. Poole; Dan I. Andersson; Christopher S. Hayes; David A. Low
Clonally derived bacterial populations exhibit significant genotypic and phenotypic diversity that contribute to fitness in rapidly changing environments. Here, we show that serial passage of Salmonella enterica serovar Typhimurium LT2 (StLT2) in broth, or within a mouse host, results in selection of an evolved population that inhibits the growth of ancestral cells by direct contact. Cells within each evolved population gain the ability to express and deploy a cryptic “orphan” toxin encoded within the rearrangement hotspot (rhs) locus. The Rhs orphan toxin is encoded by a gene fragment located downstream of the “main” rhs gene in the ancestral strain StLT2. The Rhs orphan coding sequence is linked to an immunity gene, which encodes an immunity protein that specifically blocks Rhs orphan toxin activity. Expression of the Rhs orphan immunity protein protects ancestral cells from the evolved lineages, indicating that orphan toxin activity is responsible for the observed growth inhibition. Because the Rhs orphan toxin is encoded by a fragmented reading frame, it lacks translation initiation and protein export signals. We provide evidence that evolved cells undergo recombination between the main rhs gene and the rhs orphan toxin gene fragment, yielding a fusion that enables expression and delivery of the orphan toxin. In this manner, rhs locus rearrangement provides a selective advantage to a subpopulation of cells. These observations suggest that rhs genes play important roles in intra-species competition and bacterial evolution.