Vilhelm Müller
Chalmers University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vilhelm Müller.
Angewandte Chemie | 2013
Tamara C. S. Pace; Vilhelm Müller; Shiming Li; Per Lincoln; Joakim Andréasson
Guiding light: Enantioselectivity is obtained for the photocyclization of a photochromic dithienylethene when isomerization is carried out in the presence of DNA (see scheme). Copyright
Lab on a Chip | 2017
Vilhelm Müller; Fredrik Westerlund
Optical DNA mapping has over the last decade emerged as a very powerful tool for obtaining long range sequence information from single DNA molecules. In optical DNA mapping, intact large single DNA molecules are labeled, stretched out, and imaged using a fluorescence microscope. This means that sequence information ranging over hundreds of kilobasepairs (kbp) can be obtained in one single image. Nanochannels offer homogeneous and efficient stretching of DNA that is crucial to maximize the information that can be obtained from optical DNA maps. In this review, we highlight progress in the field of optical DNA mapping in nanochannels. We discuss the different protocols for sequence specific labeling and divide them into two main categories, enzymatic labeling and affinity-based labeling. Examples are highlighted where optical DNA mapping is used to gain information on length scales that would be inaccessible with traditional techniques. Enzymatic labeling has been commercialized and is mainly used in human genetics and assembly of complex genomes, while the affinity-based methods have primarily been applied in bacteriology, for example for rapid analysis of plasmids encoding antibiotic resistance. Next, we highlight how the design of nanofluidic channels can been altered in order to obtain the desired information and discuss how recent advances in the field make it possible to retrieve information beyond DNA sequence. In the outlook section, we discuss future directions of optical DNA mapping, such as fully integrated devices and portable microscopes.
Scientific Reports | 2016
Lena Nyberg; Saair Quaderi; Gustav Emilsson; Nahid Karami; Erik Lagerstedt; Vilhelm Müller; Charleston Noble; Susanna Hammarberg; Adam N. Nilsson; Joachim Fritzsche; Erik Kristiansson; Linus Sandegren; Tobias Ambjörnsson; Fredrik Westerlund
The rapid spread of antibiotic resistance – currently one of the greatest threats to human health according to WHO – is to a large extent enabled by plasmid-mediated horizontal transfer of resistance genes. Rapid identification and characterization of plasmids is thus important both for individual clinical outcomes and for epidemiological monitoring of antibiotic resistance. Toward this aim, we have developed an optical DNA mapping procedure where individual intact plasmids are elongated within nanofluidic channels and visualized through fluorescence microscopy, yielding barcodes that reflect the underlying sequence. The assay rapidly identifies plasmids through statistical comparisons with barcodes based on publicly available sequence repositories and also enables detection of structural variations. Since the assay yields holistic sequence information for individual intact plasmids, it is an ideal complement to next generation sequencing efforts which involve reassembly of sequence reads from fragmented DNA molecules. The assay should be applicable in microbiology labs around the world in applications ranging from fundamental plasmid biology to clinical epidemiology and diagnostics.
ACS Infectious Diseases | 2016
Vilhelm Müller; Nahid Karami; Lena Nyberg; Christoffer Pichler; Paola C. Torche Pedreschi; Saair Quaderi; Joachim Fritzsche; Tobias Ambjörnsson; Christina Åhrén; Fredrik Westerlund
Resistance to life-saving antibiotics increases rapidly worldwide, and multiresistant bacteria have become a global threat to human health. Presently, the most serious threat is the increasing spread of Enterobacteriaceae carrying genes coding for extended spectrum β-lactamases (ESBL) and carbapenemases on highly mobile plasmids. We here demonstrate how optical DNA maps of single plasmids can be used as fingerprints to trace plasmids, for example, during resistance outbreaks. We use the assay to demonstrate a potential transmission route of an ESBL-carrying plasmid between bacterial strains/species and between patients, during a polyclonal outbreak at a neonatal ward at Sahlgrenska University Hospital (Gothenburg, Sweden). Our results demonstrate that optical DNA mapping is an easy and rapid method for detecting the spread of plasmids mediating resistance. With the increasing prevalence of multiresistant bacteria, diagnostic tools that can aid in solving ongoing routes of transmission, in particular in hospital settings, will be of paramount importance.
Scientific Reports | 2016
Vilhelm Müller; Fredrika Rajer; Karolin Frykholm; Lena Nyberg; Saair Quaderi; Joachim Fritzsche; Erik Kristiansson; Tobias Ambjörnsson; Linus Sandegren; Fredrik Westerlund
Bacterial plasmids are extensively involved in the rapid global spread of antibiotic resistance. We here present an assay, based on optical DNA mapping of single plasmids in nanofluidic channels, which provides detailed information about the plasmids present in a bacterial isolate. In a single experiment, we obtain the number of different plasmids in the sample, the size of each plasmid, an optical barcode that can be used to identify and trace the plasmid of interest and information about which plasmid that carries a specific resistance gene. Gene identification is done using CRISPR/Cas9 loaded with a guide-RNA (gRNA) complementary to the gene of interest that linearizes the circular plasmids at a specific location that is identified using the optical DNA maps. We demonstrate the principle on clinically relevant extended spectrum beta-lactamase (ESBL) producing isolates. We discuss how the gRNA sequence can be varied to obtain the desired information. The gRNA can either be very specific to identify a homogeneous group of genes or general to detect several groups of genes at the same time. Finally, we demonstrate an example where we use a combination of two gRNA sequences to identify carbapenemase-encoding genes in two previously not characterized clinical bacterial samples.
PLOS ONE | 2017
Paola C. Torche; Vilhelm Müller; Fredrik Westerlund; Tobias Ambjörnsson
In optical DNA mapping technologies sequence-specific intensity variations (DNA barcodes) along stretched and stained DNA molecules are produced. These “fingerprints” of the underlying DNA sequence have a resolution of the order one kilobasepairs and the stretching of the DNA molecules are performed by surface adsorption or nano-channel setups. A post-processing challenge for nano-channel based methods, due to local and global random movement of the DNA molecule during imaging, is how to align different time frames in order to produce reproducible time-averaged DNA barcodes. The current solutions to this challenge are computationally rather slow. With high-throughput applications in mind, we here introduce a parameter-free method for filtering a single time frame noisy barcode (snap-shot optical map), measured in a fraction of a second. By using only a single time frame barcode we circumvent the need for post-processing alignment. We demonstrate that our method is successful at providing filtered barcodes which are less noisy and more similar to time averaged barcodes. The method is based on the application of a low-pass filter on a single noisy barcode using the width of the Point Spread Function of the system as a unique, and known, filtering parameter. We find that after applying our method, the Pearson correlation coefficient (a real number in the range from -1 to 1) between the single time-frame barcode and the time average of the aligned kymograph increases significantly, roughly by 0.2 on average. By comparing to a database of more than 3000 theoretical plasmid barcodes we show that the capabilities to identify plasmids is improved by filtering single time-frame barcodes compared to the unfiltered analogues. Since snap-shot experiments and computational time using our method both are less than a second, this study opens up for high throughput optical DNA mapping with improved reproducibility.
PLOS ONE | 2018
Albertas Dvirnas; Christoffer Pichler; Callum L. Stewart; Saair Quaderi; Lena Nyberg; Vilhelm Müller; Santosh Kumar Bikkarolla; Erik Kristiansson; Linus Sandegren; Fredrik Westerlund; Tobias Ambjörnsson
The output from whole genome sequencing is a set of contigs, i.e. short non-overlapping DNA sequences (sizes 1-100 kilobasepairs). Piecing the contigs together is an especially difficult task for previously unsequenced DNA, and may not be feasible due to factors such as the lack of sufficient coverage or larger repetitive regions which generate gaps in the final sequence. Here we propose a new method for scaffolding such contigs. The proposed method uses densely labeled optical DNA barcodes from competitive binding experiments as scaffolds. On these scaffolds we position theoretical barcodes which are calculated from the contig sequences. This allows us to construct longer DNA sequences from the contig sequences. This proof-of-principle study extends previous studies which use sparsely labeled DNA barcodes for scaffolding purposes. Our method applies a probabilistic approach that allows us to discard “foreign” contigs from mixed samples with contigs from different types of DNA. We satisfy the contig non-overlap constraint by formulating the contig placement challenge as a combinatorial auction problem. Our exact algorithm for solving this problem reduces computational costs compared to previous methods in the combinatorial auction field. We demonstrate the usefulness of the proposed scaffolding method both for synthetic contigs and for contigs obtained using Illumina sequencing for a mixed sample with plasmid and chromosomal DNA.
Scientific Reports | 2017
Lena Nyberg; Saair Quaderi; Gustav Emilsson; Nahid Karami; Erik Lagerstedt; Vilhelm Müller; Charleston Noble; Susanna Hammarberg; Adam N. Nilsson; Joachim Fritzsche; Erik Kristiansson; Linus Sandegren; Tobias Ambjörnsson; Fredrik Westerlund
This corrects the article DOI: 10.1038/srep30410.
Physical Review E | 2015
V. Iarko; Erik Werner; Lena Nyberg; Vilhelm Müller; Joachim Fritzsche; Tobias Ambjörnsson; Jason P. Beech; Jonas O. Tegenfeldt; K. Mehlig; Fredrik Westerlund; Bernhard Mehlig
Archive | 2017
Vilhelm Müller