Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lionel Pintard is active.

Publication


Featured researches published by Lionel Pintard.


Nature | 2003

The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase

Lionel Pintard; John Willis; Andrew Willems; Jacque-Lynne F. Johnson; Martin Srayko; Thimo Kurz; Sarah Glaser; Paul E. Mains; Mike Tyers; Bruce Bowerman; Matthias Peter

Many biological processes, such as development and cell cycle progression are tightly controlled by selective ubiquitin-dependent degradation of key substrates. In this pathway, the E3-ligase recognizes the substrate and targets it for degradation by the 26S proteasome. The SCF (Skp1–Cul1–F-box) and ECS (Elongin C–Cul2–SOCS box) complexes are two well-defined cullin-based E3-ligases. The cullin subunits serve a scaffolding function and interact through their C terminus with the RING-finger-containing protein Hrt1/Roc1/Rbx1, and through their N terminus with Skp1 or Elongin C, respectively. In Caenorhabditis elegans, the ubiquitin-ligase activity of the CUL-3 complex is required for degradation of the microtubule-severing protein MEI-1/katanin at the meiosis-to-mitosis transition. However, the molecular composition of this cullin-based E3-ligase is not known. Here we identified the BTB-containing protein MEL-26 as a component required for degradation of MEI-1 in vivo. Importantly, MEL-26 specifically interacts with CUL-3 and MEI-1 in vivo and in vitro, and displays properties of a substrate-specific adaptor. Our results suggest that BTB-containing proteins may generally function as substrate-specific adaptors in Cul3-based E3-ubiquitin ligases.


The EMBO Journal | 2004

Cullin-based ubiquitin ligases: Cul3–BTB complexes join the family

Lionel Pintard; Andrew Willems; Matthias Peter

Cullin‐based E3 ligases target substrates for ubiquitin‐dependent degradation by the 26S proteasome. The SCF (Skp1–Cul1–F‐box) and ECS (ElonginC–Cul2–SOCS box) complexes are so far the best‐characterized cullin‐based ligases. Their atomic structure has been solved recently, and several substrates have been described in different organisms. In addition to Cul1 and Cul2, higher eucaryotic genomes encode for three other cullins: Cul3, Cul4, and Cul5. Recent results have shed light on the molecular composition and function of Cul3‐based E3 ligases. In these complexes, BTB‐domain‐containing proteins may bridge the cullin to the substrate in a single polypeptide, while Skp1/F‐box or ElonginC/SOCS heterodimers fulfill this function in the SCF and ECS complexes. BTB‐containing proteins are evolutionary conserved and involved in diverse biological processes, but their function has not previously been linked to ubiquitin‐dependent degradation. In this review, we present these new findings and compare the composition of Cul3‐based ligases to the well‐defined SCF and ECS ligases.


Current Biology | 2003

Neddylation and Deneddylation of CUL-3 Is Required to Target MEI-1/Katanin for Degradation at the Meiosis-to-Mitosis Transition in C. elegans

Lionel Pintard; Thimo Kurz; Sarah Glaser; John H. Willis; Matthias Peter; Bruce Bowerman

BACKGROUNDnSCF (Skp1-Cullin-F-box) complexes are a major class of E3 ligases that are required to selectively target substrates for ubiquitin-dependent degradation by the 26S proteasome. Conjugation of the ubiquitin-like protein Nedd8 to the cullin subunit (neddylation) positively regulates activity of SCF complexes, most likely by increasing their affinity for the E2 conjugated to ubiquitin. The Nedd8 conjugation pathway is required in C. elegans embryos for the ubiquitin-mediated degradation of the microtubule-severing protein MEI-1/Katanin at the meiosis-to-mitosis transition. Genetic experiments suggest that this pathway controls the activity of a CUL-3-based E3 ligase. Counteracting the Nedd8 pathway, the COP9/signalosome has been shown to promote deneddylation of the cullin subunit. However, little is known about the role of neddylation and deneddylation for E3 ligase activity in vivo.nnnRESULTSnHere, we identified and characterized the COP9/signalosome in C. elegans and showed that it promotes deneddylation of CUL-3, a critical target of the Nedd8 conjugation pathway. As in other species, the C. elegans signalosome is a macromolecular complex containing at least six subunits that localizes in the nucleus and the cytoplasm. Reducing COP9/signalosome function by RNAi results in a failure to degrade MEI-1, leading to severe defects in microtubule-dependent processes during the first mitotic division. Intriguingly, reducing COP9/signalosome function suppresses a partial defect in the neddylation pathway; this suppression suggests that deneddylation and neddylation antagonize each other.nnnCONCLUSIONSnWe conclude that both neddylation and deneddylation of CUL-3 is required for MEI-1 degradation and propose that cycles of CUL-3 neddylation and deneddylation are necessary for its ligase activity in vivo.


Current Biology | 2006

The Cullin Rtt101p Promotes Replication Fork Progression through Damaged DNA and Natural Pause Sites

Brian Luke; Gwennaëlle Versini; Malika Jaquenoud; Iram Waris Zaidi; Thimo Kurz; Lionel Pintard; Philippe Pasero; Matthias Peter

Accurate and complete DNA replication is fundamental to maintain genome integrity. While the mechanisms and underlying machinery required to duplicate bulk genomic DNA are beginning to emerge, little is known about how cells replicate through damaged areas and special chromosomal regions such as telomeres, centromeres, and highly transcribed loci . Here, we have investigated the role of the yeast cullin Rtt101p in this process. We show that rtt101Delta cells accumulate spontaneous DNA damage and exhibit a G(2)/M delay, even though they are fully proficient to detect and repair chromosome breaks. Viability of rtt101Delta mutants depends on Rrm3p, a DNA helicase involved in displacing proteinaceous complexes at programmed pause sites . Moreover, rtt101Delta cells show hyperrecombination at forks arrested at replication fork barriers (RFBs) of ribosomal DNA. Finally, rtt101Delta mutants are sensitive to fork arrest induced by DNA alkylation, but not by nucleotide depletion. We therefore propose that the cullin Rtt101p promotes fork progression through obstacles such as DNA lesions or tightly bound protein-DNA complexes via a new mechanism involving ubiquitin-conjugation.


The EMBO Journal | 2002

MRM2 encodes a novel yeast mitochondrial 21S rRNA methyltransferase

Lionel Pintard; Janusz M. Bujnicki; Bruno Lapeyre; Claire Bonnerot

Mitochondria of the yeast Saccharomyces cerevisiae assemble their ribosomes from ribosomal proteins, encoded by the nuclear genome (with one exception), and rRNAs of 15S and 21S, encoded by the mitochondrial genome. Unlike cytoplasmic rRNA, which is highly modified, mitochondrial rRNA contains only three modified nucleotides: a pseudouridine (Ψ2918) and two 2′‐O‐methylated riboses (Gm2270 and Um2791) located at the peptidyl transferase centre of 21S rRNA. We demonstrate here that the yeast nuclear genome encodes a mitochondrial protein, named Mrm2, which is required for methylating U2791 of 21S rRNA, both in vivo and in vitro. Deletion of the MRM2 gene causes thermosensitive respiration and leads to rapid loss of mitochondrial DNA. We propose that Mrm2p belongs to a new class of three eukaryotic RNA‐modifying enzymes and is the orthologue of FtsJ/RrmJ, which methylates a nucleotide of the peptidyl transferase centre of Escherichia coli 23S rRNA that is homologous to U2791 of 21S rRNA. Our data suggest that this universally conserved modified nucleotide plays an important function in vivo, possibly by inducing conformational rearrangement of the peptidyl transferase centre.


Molecular and Cellular Biology | 2007

CIF-1, a Shared Subunit of the COP9/Signalosome and Eukaryotic Initiation Factor 3 Complexes, Regulates MEL-26 Levels in the Caenorhabditis elegans Embryo

Sarah Luke-Glaser; Marcia Roy; Brett Larsen; Thierry Le Bihan; Pavel Metalnikov; Mike Tyers; Matthias Peter; Lionel Pintard

ABSTRACT The COP9/signalosome (CSN) is an evolutionarily conserved macromolecular complex that regulates the cullin-RING ligase (CRL) class of E3 ubiquitin ligases, primarily by removing the ubiquitin-like protein Nedd8 from the cullin subunit. In the Caenorhabditis elegans embryo, the CSN controls the degradation of the microtubule-severing protein MEI-1 through CUL-3 deneddylation. However, the molecular mechanisms of CSN function and its subunit composition remain to be elucidated. Here, using a proteomic approach, we have characterized the CSN and CUL-3 complexes from C. elegans embryos. We show that the CSN physically interacts with the CUL-3-based CRL and regulates its activity by counteracting the autocatalytic instability of the substrate-specific adaptor MEL-26. Importantly, we identified the uncharacterized protein K08F11.3/CIF-1 (for CSN-eukaryotic initiation factor 3 [eIF3]) as a stoichiometric and functionally important subunit of the CSN complex. CIF-1 appears to be the only ortholog of Csn7 encoded by the C. elegans genome, but it also exhibits extensive sequence similarity to eIF3m family members, which are required for the initiation of protein translation. Indeed, CIF-1 binds eIF-3.F and inactivation of cif-1 impairs translation in vivo. Taken together, our results indicate that CIF-1 is a shared subunit of the CSN and eIF3 complexes and may therefore link protein translation and degradation.


Journal of Cell Science | 2009

An interaction network of the mammalian COP9 signalosome identifies Dda1 as a core subunit of multiple Cul4-based E3 ligases

Michael H. Olma; Marcia Roy; Thierry Le Bihan; Izabela Sumara; Sarah Maerki; Brett Larsen; Manfredo Quadroni; Matthias Peter; Mike Tyers; Lionel Pintard

The COP9 signalosome (CSN) is an evolutionarily conserved macromolecular complex that interacts with cullin-RING E3 ligases (CRLs) and regulates their activity by hydrolyzing cullin-Nedd8 conjugates. The CSN sequesters inactive CRL4Ddb2, which rapidly dissociates from the CSN upon DNA damage. Here we systematically define the protein interaction network of the mammalian CSN through mass spectrometric interrogation of the CSN subunits Csn1, Csn3, Csn4, Csn5, Csn6 and Csn7a. Notably, we identified a subset of CRL complexes that stably interact with the CSN and thus might similarly be activated by dissociation from the CSN in response to specific cues. In addition, we detected several new proteins in the CRL-CSN interactome, including Dda1, which we characterized as a chromatin-associated core subunit of multiple CRL4 proteins. Cells depleted of Dda1 spontaneously accumulated double-stranded DNA breaks in a similar way to Cul4A-, Cul4B- or Wdr23-depleted cells, indicating that Dda1 interacts physically and functionally with CRL4 complexes. This analysis identifies new components of the CRL family of E3 ligases and elaborates new connections between the CRL and CSN complexes.


Journal of Cell Science | 2007

The AAA-ATPase FIGL-1 controls mitotic progression, and its levels are regulated by the CUL-3MEL-26 E3 ligase in the C. elegans germ line

Sarah Luke-Glaser; Lionel Pintard; Mike Tyers; Matthias Peter

Members of the AAA-ATPase (ATPases associated with diverse cellular activities) family use the energy from ATP hydrolysis to disrupt protein complexes involved in many cellular processes. Here, we report that FIGL-1 (Fidgetin-like 1), the single Caenorhabditis elegans homolog of mammalian fidgetin and fidgetin-like 1 AAA-ATPases, controls progression through mitosis in the germ line and the early embryo. Loss of figl-1 function leads to the accumulation of mitotic nuclei in the proliferative zone of the germ line, resulting in sterility owing to depletion of germ cells. Like the AAA-ATPase MEI-1 (also known as katanin), FIGL-1 interacts with microtubules and with MEL-26, a specificity factor of CUL-3-based E3 ligases involved in targeting proteins for ubiquitin-dependent degradation by the 26S proteasome. In the germ line, FIGL-1 is enriched in nuclei of mitotic cells, but it disappears at the transition into meiosis. Conversely, MEL-26 expression is low in nuclei of the mitotic zone and induced during meiosis. FIGL-1 accumulates in the germ line and spreads to the meiotic zone after inactivation of mel-26 or cul-3 in vivo. We conclude that degradation of FIGL-1 by the CUL-3MEL-26 E3 ligase spatially restricts FIGL-1 function to mitotic cells, where it is required for correct progression through mitosis.


Current Biology | 2005

The BTB Protein MEL-26 Promotes Cytokinesis in C. elegans by a CUL-3-Independent Mechanism

Sarah Luke-Glaser; Lionel Pintard; Chenggang Lu; Paul E. Mains; Matthias Peter

BACKGROUNDnThe initiation of a cleavage furrow is essential to separate cells during cytokinesis, but little is known about the mechanisms controlling this actin-driven process. Previous studies in C. elegans embryos revealed that inactivation of the CUL-3-based E3 ligase activator rfl-1 results in an aberrant microtubule network, ectopic furrowing during pronuclear migration, and defects during cytokinesis.nnnRESULTSnHere, we show that MEL-26, a substrate-specific adaptor of the CUL-3-based E3 ligase, is required for efficient cell separation and cleavage furrow ingression during the C. elegans early mitotic divisions. Loss of MEL-26 function leads to delayed onset and slow ingression of cytokinesis furrows that frequently regress. Conversely, increased levels of MEL-26 in cul-3(RNAi) and rfl-1 mutant embryos cause a hypercontractile cortex, with several simultaneously ingressing furrows during pronuclear migration. MEL-26 accumulates at cleavage furrows and binds the actin-interacting protein POD-1. Importantly, POD-1 is not a substrate of the MEL-26/CUL-3 ligase but is required to localize MEL-26 to the cortex.nnnCONCLUSIONSnOur results suggest that MEL-26 not only acts as a substrate-specific adaptor within the MEL-26/CUL-3 complex, but also promotes cytokinesis by a CUL-3- and microtubule-independent mechanism.


Genetics | 2009

The Role of Protein Phosphatase 4 in Regulating Microtubule Severing in the Caenorhabditis elegans Embryo

Xue Han; José-Eduardo Gomes; Cheryl L. Birmingham; Lionel Pintard; Asako Sugimoto; Paul E. Mains

MEI-1, the catalytic subunit of the Caenorhabditis elegans “katanin” microtubule-severing complex, is required for meiotic spindle formation. However, MEI-1 must be inactivated after the completion of meiosis to allow formation of the first mitotic spindle. Recent work demonstrated that post-meiotic MEI-1 undergoes ubiquitin-dependent degradation mediated by two independent pathways. Here we describe another level of MEI-1 regulation involving the protein phosphatase 4 (PP4) complex. The PP4 R1 regulatory subunit protein phosphatase four regulatory subunit 1 (ppfr-1) was identified in an RNA interference (RNAi) screen for suppressors of a mei-1(gf) allele that is refractory to post-meiotic degradation. RNAi to the PP4 catalytic subunit PPH-4.1 or to the α4 regulatory PPFR-4 also suppressed lethality of ectopic MEI-1. These results suggest that PP4(+) activates MEI-1, and therefore loss of PP4 decreases ectopic MEI-1(gf) activity. PPH-4.1 and MEI-1 co-immunoprecipitate with one another, indicating that the PP4 complex likely regulates MEI-1 activity directly rather than through an intermediate. The ppfr-1 mutant has subtle meiotic defects indicating that PPFR-1 also regulates MEI-1 during meiosis. MBK-2 is the only kinase known to phosphorylate MEI-1 and triggers post-meiotic MEI-1 degradation. However, genetic interactions between PP4 and mbk-2 were not consistent with an antagonistic relationship between the phosphatase and kinase. Additionally, reducing PP4 in mei-1(gf) did not change the level or localization of post-meiotic MEI-1. Thus, by making use of a genetic background where MEI-1 is ectopically expressed, we have uncovered a third mechanism of MEI-1 regulation, one based on phosphorylation but independent of degradation. The redundant regulatory pathways likely contribute in different ways to the rapid and precise post-meiotic inactivation of MEI-1 microtubule-severing activity.

Collaboration


Dive into the Lionel Pintard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mike Tyers

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcia Roy

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge