Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thierry Le Bihan is active.

Publication


Featured researches published by Thierry Le Bihan.


Nature | 2011

S -nitrosylation of NADPH oxidase regulates cell death in plant immunity

Byung-Wook Yun; Angela Feechan; Minghui Yin; Noor Baity Saidi; Thierry Le Bihan; Manda Yu; John W. Moore; Jeong-Gu Kang; Eunjung Kwon; Steven H. Spoel; Jacqueline A. Pallas; Gary J. Loake

Changes in redox status are a conspicuous feature of immune responses in a variety of eukaryotes, but the associated signalling mechanisms are not well understood. In plants, attempted microbial infection triggers the rapid synthesis of nitric oxide and a parallel accumulation of reactive oxygen intermediates, the latter generated by NADPH oxidases related to those responsible for the pathogen-activated respiratory burst in phagocytes. Both nitric oxide and reactive oxygen intermediates have been implicated in controlling the hypersensitive response, a programmed execution of plant cells at sites of attempted infection. However, the molecular mechanisms that underpin their function and coordinate their synthesis are unknown. Here we show genetic evidence that increases in cysteine thiols modified using nitric oxide, termed S-nitrosothiols, facilitate the hypersensitive response in the absence of the cell death agonist salicylic acid and the synthesis of reactive oxygen intermediates. Surprisingly, when concentrations of S-nitrosothiols were high, nitric oxide function also governed a negative feedback loop limiting the hypersensitive response, mediated by S-nitrosylation of the NADPH oxidase, AtRBOHD, at Cys 890, abolishing its ability to synthesize reactive oxygen intermediates. Accordingly, mutation of Cys 890 compromised S-nitrosothiol-mediated control of AtRBOHD activity, perturbing the magnitude of cell death development. This cysteine is evolutionarily conserved and specifically S-nitrosylated in both human and fly NADPH oxidase, suggesting that this mechanism may govern immune responses in both plants and animals.


Nature Communications | 2014

Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity

Amy H. Buck; Gillian Coakley; Fabio Simbari; Henry J. McSorley; Juan F. Quintana; Thierry Le Bihan; Sujai Kumar; Cei Abreu-Goodger; Marissa Lear; Yvonne Harcus; Alessandro Ceroni; Simon A. Babayan; Mark Blaxter; Alasdair Ivens; Rick M. Maizels

In mammalian systems RNA can move between cells via vesicles. Here we demonstrate that the gastrointestinal nematode Heligmosomoides polygyrus, which infects mice, secretes vesicles containing microRNAs (miRNAs) and Y RNAs as well as a nematode Argonaute protein. These vesicles are of intestinal origin and are enriched for homologues of mammalian exosome proteins. Administration of the nematode exosomes to mice suppresses Type 2 innate responses and eosinophilia induced by the allergen Alternaria. Microarray analysis of mouse cells incubated with nematode exosomes in vitro identifies Il33r and Dusp1 as suppressed genes, and Dusp1 can be repressed by nematode miRNAs based on a reporter assay. We further identify miRNAs from the filarial nematode Litomosoides sigmodontis in the serum of infected mice, suggesting that miRNA secretion into host tissues is conserved among parasitic nematodes. These results reveal exosomes as another mechanism by which helminths manipulate their hosts and provide a mechanistic framework for RNA transfer between animal species.


Developmental Cell | 2009

The FERM-Domain Protein Expanded Regulates Hippo Pathway Activity via Direct Interactions with the Transcriptional Activator Yorkie

Caroline Badouel; Laura Gardano; Nancy Amin; Ankush Garg; Robyn Rosenfeld; Thierry Le Bihan; Helen McNeill

The Hippo kinase pathway plays a central role in growth regulation and tumor suppression from flies to man. The Hippo/Mst kinase phosphorylates and activates the NDR family kinase Warts/Lats, which phosphorylates and inhibits the transcriptional activator Yorkie/YAP. Current models place the FERM-domain protein Expanded upstream of Hippo kinase in growth control. To understand how Expanded regulates Hippo pathway activity, we used affinity chromatography and mass spectrometry to identify Expanded-binding proteins. Surprisingly we find that Yorkie is the major Expanded-binding protein in Drosophila S2 cells. Expanded binds Yorkie at endogenous levels via WW-domain-PPxY interactions, independently of Yorkie phosphorylation at S168, which is critical for 14-3-3 binding. Expanded relocalizes Yorkie from the nucleus, abrogating its nuclear activity, and it can regulate growth downstream of warts in vivo. These data lead to a new model whereby Expanded functions downstream of Warts, in concert with 14-3-3 proteins to sequester Yorkie in the cytoplasm, inhibiting growth activity of the Hippo pathway.


Molecular and Cellular Biology | 2007

CIF-1, a Shared Subunit of the COP9/Signalosome and Eukaryotic Initiation Factor 3 Complexes, Regulates MEL-26 Levels in the Caenorhabditis elegans Embryo

Sarah Luke-Glaser; Marcia Roy; Brett Larsen; Thierry Le Bihan; Pavel Metalnikov; Mike Tyers; Matthias Peter; Lionel Pintard

ABSTRACT The COP9/signalosome (CSN) is an evolutionarily conserved macromolecular complex that regulates the cullin-RING ligase (CRL) class of E3 ubiquitin ligases, primarily by removing the ubiquitin-like protein Nedd8 from the cullin subunit. In the Caenorhabditis elegans embryo, the CSN controls the degradation of the microtubule-severing protein MEI-1 through CUL-3 deneddylation. However, the molecular mechanisms of CSN function and its subunit composition remain to be elucidated. Here, using a proteomic approach, we have characterized the CSN and CUL-3 complexes from C. elegans embryos. We show that the CSN physically interacts with the CUL-3-based CRL and regulates its activity by counteracting the autocatalytic instability of the substrate-specific adaptor MEL-26. Importantly, we identified the uncharacterized protein K08F11.3/CIF-1 (for CSN-eukaryotic initiation factor 3 [eIF3]) as a stoichiometric and functionally important subunit of the CSN complex. CIF-1 appears to be the only ortholog of Csn7 encoded by the C. elegans genome, but it also exhibits extensive sequence similarity to eIF3m family members, which are required for the initiation of protein translation. Indeed, CIF-1 binds eIF-3.F and inactivation of cif-1 impairs translation in vivo. Taken together, our results indicate that CIF-1 is a shared subunit of the CSN and eIF3 complexes and may therefore link protein translation and degradation.


Journal of Cell Science | 2009

An interaction network of the mammalian COP9 signalosome identifies Dda1 as a core subunit of multiple Cul4-based E3 ligases

Michael H. Olma; Marcia Roy; Thierry Le Bihan; Izabela Sumara; Sarah Maerki; Brett Larsen; Manfredo Quadroni; Matthias Peter; Mike Tyers; Lionel Pintard

The COP9 signalosome (CSN) is an evolutionarily conserved macromolecular complex that interacts with cullin-RING E3 ligases (CRLs) and regulates their activity by hydrolyzing cullin-Nedd8 conjugates. The CSN sequesters inactive CRL4Ddb2, which rapidly dissociates from the CSN upon DNA damage. Here we systematically define the protein interaction network of the mammalian CSN through mass spectrometric interrogation of the CSN subunits Csn1, Csn3, Csn4, Csn5, Csn6 and Csn7a. Notably, we identified a subset of CRL complexes that stably interact with the CSN and thus might similarly be activated by dissociation from the CSN in response to specific cues. In addition, we detected several new proteins in the CRL-CSN interactome, including Dda1, which we characterized as a chromatin-associated core subunit of multiple CRL4 proteins. Cells depleted of Dda1 spontaneously accumulated double-stranded DNA breaks in a similar way to Cul4A-, Cul4B- or Wdr23-depleted cells, indicating that Dda1 interacts physically and functionally with CRL4 complexes. This analysis identifies new components of the CRL family of E3 ligases and elaborates new connections between the CRL and CSN complexes.


Nucleic Acids Research | 2014

Snapshots of pre-rRNA structural flexibility reveal eukaryotic 40S assembly dynamics at nucleotide resolution

Ralph D. Hector; Elena Burlacu; Stuart Aitken; Thierry Le Bihan; Maarten Tuijtel; Alina Zaplatina; Atlanta G. Cook; Sander Granneman

Ribosome assembly in eukaryotes involves the activity of hundreds of assembly factors that direct the hierarchical assembly of ribosomal proteins and numerous ribosomal RNA folding steps. However, detailed insights into the function of assembly factors and ribosomal RNA folding events are lacking. To address this, we have developed ChemModSeq, a method that combines structure probing, high-throughput sequencing and statistical modeling, to quantitatively measure RNA structural rearrangements during the assembly of macromolecular complexes. By applying ChemModSeq to purified 40S assembly intermediates we obtained nucleotide-resolution maps of ribosomal RNA flexibility revealing structurally distinct assembly intermediates and mechanistic insights into assembly dynamics not readily observed in cryo-electron microscopy reconstructions. We show that RNA restructuring events coincide with the release of assembly factors and predict that completion of the head domain is required before the Rio1 kinase enters the assembly pathway. Collectively, our results suggest that 40S assembly factors regulate the timely incorporation of ribosomal proteins by delaying specific folding steps in the 3′ major domain of the 20S pre-ribosomal RNA.


Journal of Proteome Research | 2012

Proteome Turnover in the Green Alga Ostreococcus tauri by Time Course 15N Metabolic Labeling Mass Spectrometry

Sarah F. Martin; Vijaya S. Munagapati; Eliane Salvo-Chirnside; Lorraine E. Kerr; Thierry Le Bihan

Protein synthesis and degradation determine the cellular levels of proteins, and their control hence enables organisms to respond to environmental change. Experimentally, these are little known proteome parameters; however, recently, SILAC-based mass spectrometry studies have begun to quantify turnover in the proteomes of cell lines, yeast, and animals. Here, we present a proteome-scale method to quantify turnover and calculate synthesis and degradation rate constants of individual proteins in autotrophic organisms such as algae and plants. The workflow is based on the automated analysis of partial stable isotope incorporation with (15)N. We applied it in a study of the unicellular pico-alga Ostreococcus tauri and observed high relative turnover in chloroplast-encoded ATPases (0.42-0.58% h(-1)), core photosystem II proteins (0.34-0.51% h(-1)), and RbcL (0.47% h(-1)), while nuclear-encoded RbcS2 is more stable (0.23% h(-1)). Mitochondrial targeted ATPases (0.14-0.16% h(-1)), photosystem antennae (0.09-0.14% h(-1)), and histones (0.07-0.1% h(-1)) were comparatively stable. The calculation of degradation and synthesis rate constants k(deg) and k(syn) confirms RbcL as the bulk contributor to overall protein turnover. This study performed over 144 h of incorporation reveals dynamics of protein complex subunits as well as isoforms targeted to different organelles.


Molecular and Biochemical Parasitology | 2010

Gel free analysis of the proteome of intracellular Leishmania mexicana

Daniel Paape; Martin E. Barrios-Llerena; Thierry Le Bihan; Logan Mackay; Toni Aebischer

Investigating the proteome of intracellular Leishmania amastigotes has recently become possible due to the exploitation of fluorescence activated intracellular parasite sorting. Here, we employed this technology in combination with gel free analysis to greatly improve proteome coverage and suggest proteins putatively secreted by the parasites. In total, 1764 proteins were identified of which 741 had not been reported before. Protein abundance indices were calculated to rank individual proteins according to their abundance in vivo. Using the LeishCyc resource, an overview of metabolically relevant proteins was produced that integrated protein abundance data. Bioinformatic analysis identified 143 proteins possibly secreted by L. mexicana amastigotes, half of which have no known function. The data provide a useful resource, e.g. for modelling metabolic flux or selecting novel vaccine antigens.


Journal of Proteomics | 2011

Shotgun proteomic analysis of the unicellular alga Ostreococcus tauri

Thierry Le Bihan; Sarah F. Martin; Eliane S. Chirnside; Gerben van Ooijen; Martin E. Barrios-Llerena; John S. O'Neill; Pavel V. Shliaha; Lorraine E. Kerr; Andrew J. Millar

Ostreococcus tauri is a unicellular green alga and amongst the smallest and simplest free-living eukaryotes. The O. tauri genome sequence was determined in 2006. Molecular, physiological and taxonomic data that has been generated since then highlight its potential as a simple model species for algae and plants. However, its proteome remains largely unexplored. This paper describes the global proteomic study of O. tauri, using mass spectrometry-based approaches: phosphopeptide enrichment, cellular fractionation, label-free quantification and (15)N metabolic labeling. The O. tauri proteome was analyzed under the following conditions: sampling at different times during the circadian cycle, after 24h of illumination, after 24h of darkness and under various nitrogen source supply levels. Cell cycle related proteins such as dynamin and kinesin were significantly up-regulated during the daylight-to-darkness transition. This is reflected by their higher intensity at ZT13 and this transition phase coincides with the end of mitosis. Proteins involved in several metabolic mechanisms were found to be up-regulated under low nitrogen conditions, including carbon storage pathways, glycolysis, phosphate transport, and the synthesis of inorganic polyphosphates. Ostreococcus tauri responds to low nitrogen conditions by reducing its nitrogen assimilation machinery which suggests an atypical adaptation mechanism for coping with a nutrient-limited environment.


Journal of the American Society for Mass Spectrometry | 2003

On-line strong cation exchange μ-HPLC-ESI-MS/MS for protein identification and process optimization

Thierry Le Bihan; Henry S. Duewel; Daniel Figeys

We have developed an on-line strong cation exchange (SCX)-ESI-MS/MS platform for the rapid identification of proteins contained in mixtures. This platform consists of a SCX precolumn followed by a nanoflow SCX column on-line with an electrospray ion trap mass spectrometer. We also used this platform to study the dynamics of peptide separation/extraction by SCX, in particular to understand the parameters affecting the performance of SCX in multidimensional chromatography. For example, we have demonstrated that the buffer typically used for tryptic digestion of protein mixtures can have a detrimental effect on the chromatographic behaviour of peptides during SCX separations, thereby affecting certain peptide quantitation approaches that rely on reproducible peptide fractionation. We have also demonstrated that band broadening results when a step (discontinuous) gradient approach is used to displace peptides from the SCX precolumn, reducing the separation power of SCX in multidimensional chromatography. In contrast, excellent chromatographic peak shapes are observed when a defined (continuous) gradient is used. Finally, using a tryptic digest of a protein extract derived from human K562 cells, we observed that larger molecular weight peptides are identified using this on-line SCX approach compared to the more conventional reverse phase (RP) LC/MS approach. Both methods used in tandem complement each other and can lead to a greater number of peptide identifications from a given sample.

Collaboration


Dive into the Thierry Le Bihan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcia Roy

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge