Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lionel Van Maldergem is active.

Publication


Featured researches published by Lionel Van Maldergem.


Cell | 2010

Human TUBB3 Mutations Perturb Microtubule Dynamics, Kinesin Interactions, and Axon Guidance

Max A. Tischfield; Hagit Baris; Chen Wu; G. Rudolph; Lionel Van Maldergem; Wei He; Wai Man Chan; Caroline Andrews; Joseph L. Demer; Richard L. Robertson; David A. Mackey; Jonathan B Ruddle; Bird Td; Irene Gottlob; Christina Pieh; Elias I. Traboulsi; Scott L. Pomeroy; David G. Hunter; Janet S. Soul; Anna Newlin; Louise J. Sabol; Edward J. Doherty; Clara E. de Uzcátegui; Nicolas Uzcategui; Mary Louise Z Collins; Emin Cumhur Sener; Bettina Wabbels; Heide Hellebrand; Thomas Meitinger; Teresa de Berardinis

We report that eight heterozygous missense mutations in TUBB3, encoding the neuron-specific beta-tubulin isotype III, result in a spectrum of human nervous system disorders that we now call the TUBB3 syndromes. Each mutation causes the ocular motility disorder CFEOM3, whereas some also result in intellectual and behavioral impairments, facial paralysis, and/or later-onset axonal sensorimotor polyneuropathy. Neuroimaging reveals a spectrum of abnormalities including hypoplasia of oculomotor nerves and dysgenesis of the corpus callosum, anterior commissure, and corticospinal tracts. A knock-in disease mouse model reveals axon guidance defects without evidence of cortical cell migration abnormalities. We show that the disease-associated mutations can impair tubulin heterodimer formation in vitro, although folded mutant heterodimers can still polymerize into microtubules. Modeling each mutation in yeast tubulin demonstrates that all alter dynamic instability whereas a subset disrupts the interaction of microtubules with kinesin motors. These findings demonstrate that normal TUBB3 is required for axon guidance and maintenance in mammals.


Nature Genetics | 2008

Impaired glycosylation and cutis laxa caused by mutations in the vesicular H + -ATPase subunit ATP6V0A2

Uwe Kornak; Ellen Reynders; Aikaterini Dimopoulou; Jeroen van Reeuwijk; Bjoern Fischer; Anna Rajab; Birgit Budde; Peter Nürnberg; François Foulquier; Dirk J. Lefeber; Zsolt Urban; Stephanie Gruenewald; Wim Annaert; Han G. Brunner; Hans van Bokhoven; Ron A. Wevers; Eva Morava; Gert Matthijs; Lionel Van Maldergem; Stefan Mundlos

We identified loss-of-function mutations in ATP6V0A2, encoding the a2 subunit of the V-type H+ ATPase, in several families with autosomal recessive cutis laxa type II or wrinkly skin syndrome. The mutations result in abnormal glycosylation of serum proteins (CDG-II) and cause an impairment of Golgi trafficking in fibroblasts from affected individuals. These results indicate that the a2 subunit of the proton pump has an important role in Golgi function.


Nature Genetics | 2009

Mutations in PYCR1 cause cutis laxa with progeroid features.

Bruno Reversade; Nathalie Escande-Beillard; Aikaterini Dimopoulou; Björn Fischer; Serene C. Chng; Yun Li; Mohammad Shboul; Puay Yoke Tham; Hülya Kayserili; Lihadh Al-Gazali; Monzer Shahwan; Francesco Brancati; Hane Lee; Brian D. O'Connor; Mareen Schmidt-von Kegler; Barry Merriman; Stanley F. Nelson; Amira Masri; Fawaz Alkazaleh; Deanna Guerra; Paola Ferrari; Arti Nanda; Anna Rajab; David Markie; Mary J. Gray; John Nelson; Arthur W. Grix; Annemarie Sommer; Ravi Savarirayan; Andreas R. Janecke

Autosomal recessive cutis laxa (ARCL) describes a group of syndromal disorders that are often associated with a progeroid appearance, lax and wrinkled skin, osteopenia and mental retardation. Homozygosity mapping in several kindreds with ARCL identified a candidate region on chromosome 17q25. By high-throughput sequencing of the entire candidate region, we detected disease-causing mutations in the gene PYCR1. We found that the gene product, an enzyme involved in proline metabolism, localizes to mitochondria. Altered mitochondrial morphology, membrane potential and increased apoptosis rate upon oxidative stress were evident in fibroblasts from affected individuals. Knockdown of the orthologous genes in Xenopus and zebrafish led to epidermal hypoplasia and blistering that was accompanied by a massive increase of apoptosis. Our findings link mutations in PYCR1 to altered mitochondrial function and progeroid changes in connective tissues.


American Journal of Human Genetics | 2010

Mechanisms for Nonrecurrent Genomic Rearrangements Associated with CMT1A or HNPP: Rare CNVs as a Cause for Missing Heritability

Feng Zhang; Pavel Seeman; Pengfei Liu; Marian A. J. Weterman; Claudia Gonzaga-Jauregui; Charles F. Towne; Sat Dev Batish; Els De Vriendt; Bernd Rautenstrauss; Klaus Henning Krause; Mehrdad Khajavi; Jan Posádka; Antoon Vandenberghe; Francesc Palau; Lionel Van Maldergem; Frank Baas; Vincent Timmerman; James R. Lupski

Genomic rearrangements involving the peripheral myelin protein gene (PMP22) in human chromosome 17p12 are associated with neuropathy: duplications cause Charcot-Marie-Tooth disease type 1A (CMT1A), whereas deletions lead to hereditary neuropathy with liability to pressure palsies (HNPP). Our previous studies showed that >99% of these rearrangements are recurrent and mediated by nonallelic homologous recombination (NAHR). Rare copy number variations (CNVs) generated by nonrecurrent rearrangements also exist in 17p12, but their underlying mechanisms are not well understood. We investigated 21 subjects with rare CNVs associated with CMT1A or HNPP by oligonucleotide-based comparative genomic hybridization microarrays and breakpoint sequence analyses, and we identified 17 unique CNVs, including two genomic deletions, ten genomic duplications, two complex rearrangements, and three small exonic deletions. Each of these CNVs includes either the entire PMP22 gene, or exon(s) only, or ultraconserved potential regulatory sequences upstream of PMP22, further supporting the contention that PMP22 is the critical gene mediating the neuropathy phenotypes associated with 17p12 rearrangements. Breakpoint sequence analysis reveals that, different from the predominant NAHR mechanism in recurrent rearrangement, various molecular mechanisms, including nonhomologous end joining, Alu-Alu-mediated recombination, and replication-based mechanisms (e.g., FoSTeS and/or MMBIR), can generate nonrecurrent 17p12 rearrangements associated with neuropathy. We document a multitude of ways in which gene function can be altered by CNVs. Given the characteristics, including small size, structural complexity, and location outside of coding regions, of selected rare CNVs, their identification remains a challenge for genome analysis. Rare CNVs may potentially represent an important portion of missing heritability for human diseases.


American Journal of Human Genetics | 2010

Exome Sequencing in Brown-Vialetto-Van Laere Syndrome

Janel O. Johnson; J. Raphael Gibbs; Lionel Van Maldergem; Henry Houlden; Andrew Singleton

To the Editor: Brown-Vialetto-van Laere syndrome (BVVL [MIM 211530]) is a rare, progressive, childhood neurodegenerative disease that is characterized by pontobulbar palsy, sensorineural hearing loss, and respiratory problems. BVVL is clinically heterogeneous, presenting as early as the neonatal period and as late as the third decade of life.1 BVVL has a prominent familial component, consistent with an autosomal-recessive mode of inheritance, in all but one family reported. The genetic cause of BVVL was until recently unknown; therefore, we read with interest the recent article by Green and colleagues that described mutations of C20orf54 (MIM 613350) as the underlying cause of BVVL.


Brain | 2017

A panel study on patients with dominant cerebellar ataxia highlights the frequency of channelopathies

Marie Coutelier; Giulia Coarelli; Marie-Lorraine Monin; Juliette Konop; Claire-Sophie Davoine; Christelle Tesson; Rémi Valter; Mathieu Anheim; Anthony Behin; Giovanni Castelnovo; Perrine Charles; Albert David; Claire Ewenczyk; Mélanie Fradin; Cyril Goizet; Didier Hannequin; Pierre Labauge; Florence Riant; Pierre Sarda; Yves Sznajer; François Tison; Urielle Ullmann; Lionel Van Maldergem; Fanny Mochel; Alexis Brice; Giovanni Stevanin; Alexandra Durr

Autosomal dominant cerebellar ataxias have a marked heterogeneous genetic background, with mutations in 34 genes identified so far. This large amount of implicated genes accounts for heterogeneous clinical presentations, making genotype-phenotype correlations a major challenge in the field. While polyglutamine ataxias, linked to CAG repeat expansions in genes such as ATXN1, ATXN2, ATXN3, ATXN7, CACNA1A and TBP, have been extensively characterized in large cohorts, there is a need for comprehensive assessment of frequency and phenotype of more conventional ataxias. After exclusion of CAG/polyglutamine expansions in spinocerebellar ataxia genes in 412 index cases with dominantly inherited cerebellar ataxias, we aimed to establish the relative frequencies of mutations in other genes, with an approach combining panel sequencing and TaqMan® polymerase chain reaction assay. We found relevant genetic variants in 59 patients (14.3%). The most frequently mutated were channel genes [CACNA1A (n = 16), KCND3 (n = 4), KCNC3 (n = 2) and KCNA1 (n = 2)]. Deletions in ITPR1 (n = 11) were followed by biallelic variants in SPG7 (n = 9). Variants in AFG3L2 (n = 7) came next in frequency, and variants were rarely found in STBN2 (n = 2), ELOVL5, FGF14, STUB1 and TTBK2 (n = 1 each). Interestingly, possible risk factor variants were detected in SPG7 and POLG. Clinical comparisons showed that ataxias due to channelopathies had a significantly earlier age at onset with an average of 24.6 years, versus 40.9 years for polyglutamine expansion spinocerebellar ataxias and 37.8 years for SPG7-related forms (P = 0.001). In contrast, disease duration was significantly longer in the former (20.5 years versus 9.3 and 13.7, P=0.001), though for similar functional stages, indicating slower progression of the disease. Of interest, intellectual deficiency was more frequent in channel spinocerebellar ataxias, while cognitive impairment in adulthood was similar among the three groups. Similar differences were found among a single gene group, comparing 23 patients with CACNA1A expansions (spinocerebellar ataxia 6) to 22 patients with CACNA1A point mutations, which had lower average age at onset (25.2 versus 47.3 years) with longer disease duration (18.7 versus 10.9), but lower severity indexes (0.39 versus 0.44), indicating slower progression of the disease. In conclusion, we identified relevant genetic variations in up to 15% of cases after exclusion of polyglutamine expansion spinocerebellar ataxias, and confirmed CACNA1A and SPG7 as major ataxia genes. We could delineate firm genotype-phenotype correlations that are important for genetic counselling and of possible prognostic value.


BMC Medical Genetics | 2011

Molecular and neurological characterizations of three Saudi families with lipoid proteinosis

Mustafa A. Salih; Khaled K. Abu-Amero; Saleh K. AlRasheed; Ibrahim A. Alorainy; Lu Liu; John A. McGrath; Lionel Van Maldergem; Yasser H. Al-Faky; Adel H. Alsuhaibani; Darren T. Oystreck; Thomas M. Bosley

BackgroundLipoid proteinosis is a rare autosomal recessive disease characterized by cutaneous and mucosal lesions and hoarseness appearing in early childhood. It is caused by homozygous or compound heterozygous mutations in the ECM1 gene. The disease is largely uncharacterized in Arab population and the mutation(s) spectrum in the Arab population is largely unknown. We report the neurologic and neuroradiologic characteristics and ECM1 gene mutations of seven individuals with lipoid proteinosis (LP) from three unrelated consanguineous families.MethodsClinical, neurologic, and neuro-ophthalmologic examinations; skin histopathology; brain CT and MRI; and sequencing of the fullECM1 gene.ResultsAll seven affected individuals had skin scarring and hoarseness from early childhood. The two children in Family 1 had worse skin involvement and worse hoarseness than affected children of Families 2 and 3. Both children in Family 1 were modestly mentally retarded, and one had typical calcifications of the amygdalae on CT scan. Affected individuals in Families 2 and 3 had no grossneurologic, neurodevelopmental, or neuroimaging abnormalities. Skin histopathology was compatible with LP in all three families. Sequencing the full coding region of ECM1 gene revealed two novel mutationsin Family 1 (c.1300-1301delAA) and Family 2 (p.Cys269Tyr) and in Family 3 a previously described 1163 bp deletion starting 34 bp into intron 8.ConclusionsThese individuals illustrate the neurologic spectrum of LP, including variable mental retardation, personality changes, and mesial temporal calcificationand imply that significant neurologic involvement may be somewhat less common than previously thought. The cause of neurologic abnormalities was not clear from either neuroimaging or from what is known about ECM1 function. The severity of dermatologic abnormalities and hoarseness generally correlated with neurologic abnormalities, with Family 1 being somewhat more affected in all spheres than the other two families. Nevertheless, phenotype-genotype correlation was not obvious, possibly because of difficulty quantifying the neurologic phenotype and because of genetic complexity.


Gene Expression Patterns | 2009

Spatiotemporal expression in mouse brain of Kiaa2022, a gene disrupted in two patients with severe mental retardation

Vincent Cantagrel; Marie-Reine Haddad; Philippe Ciofi; David Andrieu; Anne-Marie Lossi; Lionel Van Maldergem; Jean-Christophe Roux; Laurent Villard

We previously identified an inactivating disruption of the X-linked KIAA2022 gene by a chromosomal rearrangement in two male patients with severe mental retardation. In order to determine if KIAA2022 has a role during the development of the central nervous system, we have cloned its murine ortholog, Kiaa2022, determined its genomic structure and studied its expression during mouse development. We show that Kiaa2022 is preferentially expressed in the central nervous system and that the transcript is highly expressed in postmitotic neurons. The expression of Kiaa2022 is first detectable at E10.5 to reach a maximum at P3 where it is notably expressed in the hippocampus, the entorhinal cortex and strongly in the ventral premammillary nucleus. After P3, the expression of Kiaa2022 decreases and maintains very low levels thereafter. Our results show that Kiaa2022 is expressed in the developing brain and that it may play a role in postmitotic, maturing neurons.


Frontiers in Neurology | 2017

A Postural Tremor Highly Responsive to Transcranial Cerebello-Cerebral DCS in ARCA3

Florian Bodranghien; Nordeyn Oulad Ben Taib; Lionel Van Maldergem; Mario Manto

Background and objectives Cerebellar ataxias are disabling disorders that impact the quality of life of patients. In many cases, an effective treatment is missing. Despite the increasing knowledge on the pathogenesis of cerebellar disorders including genetic aspects, there is currently a gap in the therapeutical management of cerebellar deficits. Cerebellar ataxia associated with ANO10 mutation (ARCA3) presents a disabling cerebellar syndrome. The aim of this study is to report a patient with a marked postural tremor responding to transcranial cerebello-cerebral direct current stimulation (tCCDCS). Methods We applied tCCDCS using anodal stimulation over the cerebellum with a return electrode on the contralateral motor cortex. We performed a clinical rating, accelerometry studies, and recordings of voluntary movements at baseline, after sham, and after active tCCDCS. Results A dramatic response of postural tremor was observed after tCCDCS, with a major drop of the power spectral density to 26.12% of basal values. Discussion The postural tremor of cerebellar ataxia associated with ANO10 mutation was highly responsive to tCCDCS in our patient. This case illustrates that tCCDCS is a novel therapeutic option in the treatment of cerebellar deficits and might represent a promising tool to reduce tremor in ARCA3.


Archive | 2015

ATP6V0A2-Related Cutis Laxa

Lionel Van Maldergem; William B. Dobyns; Uwe Kornak

Collaboration


Dive into the Lionel Van Maldergem's collaboration.

Top Co-Authors

Avatar

Uwe Kornak

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

William B. Dobyns

Seattle Children's Research Institute

View shared research outputs
Top Co-Authors

Avatar

Anna Rajab

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge