Lior Medina
Tel Aviv University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lior Medina.
Applied Physics Letters | 2016
Lior Medina; Rivka Gilat; B. Robert Ilic; Slava Krylov
We demonstrate dynamic snap-through from a primary to a secondary statically inaccessible stable configuration in single crystal silicon, curved, doubly clamped micromechanical beam structures. Nanoscale motion of the fabricated bistable micromechanical devices was transduced using a high speed camera. Our experimental and theoretical results collectively show, that the transition between the two stable states was solely achieved by a tailored time dependent electrostatic actuation. Fast imaging of micromechanical motion allowed for direct visualization of dynamic trapping at the statically inaccessible state. These results further suggest that our direct dynamic actuation transcends prevalent limitations in controlling geometrically non-linear microstructures, and may have applications extending to multi-stable, topologically optimized micromechanical logic and non-volatile memory architectures.
Archive | 2012
Lior Medina; Rivka Gilat; Slava Krylov
The symmetric and asymmetric buckling of micro beams subjected to distributed electrostatic force is studied. The analysis is carried out for two separate cases: a case of a stress-free beam, which is initially curved by fabrication and a case of a pre-stressed beam buckled due to an axial force. The analysis is based on a reduced order (RO) model resulting from the Galerkin decomposition with vibrational or buckling modes of a straight beam used as the base functions. The criteria of symmetric, limit point, buckling and of non-symmetric bifurcation are derived in terms of the geometric parameters of the beams. While the necessary symmetry breaking criterion establishes the conditions for the appearance of bifurcation points on the unstable branch of the symmetric limit point buckling curve, the sufficient criterion assures a realistic asymmetric buckling bifurcating from the stable branches of the symmetric equilibrium path. It is shown that while the symmetry breaking conditions are affected by the nonlinearity of the electrostatic force, its influence is less pronounced than in the case of the symmetric snap-through. A comparison between the results provided by the reduced order model, and those obtained by other numerical analyses confirms the accuracy of the symmetry breaking criteria and their applicability for the analysis and design of micro beams.
international conference on solid state sensors actuators and microsystems | 2015
Lior Medina; Rivka Gilat; B. Ilic; Slava Krylov
We report on a first experimental demonstration of dynamic trapping of electrostatically actuated double clamped curved micro beam. The beam is configured in an isolated singular post-buckled configuration, showing enhanced gap usage which cannot be reached by either static or by a suddenly applied single step load. The trapping is achieved using a dynamic snap-through induced by a tailored two step time dependent electrostatic loading.
Volume 4: 19th Design for Manufacturing and the Life Cycle Conference; 8th International Conference on Micro- and Nanosystems | 2014
Lior Medina; Rivka Gilat; Slava Krylov
Micro and nano devices incorporating bi-stable structural elements such as micro beams are designed to exploit the fact that the latter possess two stable configurations at the same actuation force. Generally, the transition of a micro beam from one table state to another, namely the snap-through which is essentially dynamic phenomenon, can be initiated by either static or dynamic activations. In this work, results of theoretical and numerical investigations of the transient dynamics of a pre-stressed initially curved double clamped micro beams actuated by a time dependent electrostatic load are presented. We show by means of a reduced order model of a shallow beam, derived using the Galerkin procedure, that the beam may exhibit various types of responses. For certain beam characteristics, the second stable state is inaccessible under a static loading but is attainable only by means of a specially tailored dynamic actuation. This gives way to the possibility of trapping the dynamically bi-stable beam at a stable configuration which is close to the electrode by applying special loading sequences.Copyright
Volume 4: 21st Design for Manufacturing and the Life Cycle Conference; 10th International Conference on Micro- and Nanosystems | 2016
Lior Medina; Rivka Gilat; Slava Krylov
The axisymmetric snap-through of an initially curved circular micro plate, subjected to a transversal distributed electrostatic force is studied. The analysis is based on a reduced order (RO) model resulting from the Galerkin decomposition, with buckling modes of a flat plate used as the base functions. In order to check the validity of the RO model, the corresponding problem for a displacement-independent (“mechanical”) load is solved, and a comparison between the RO model and those obtained using finite elements (FE) analysis is carried out. It is shown, that the two are in good agreement, indicating that the RO model can be used for a plate undergoing electrostatic loading. However, the study shows that at least three degrees of freedom (DOF) are required for an accurate prediction of the equilibrium path and bistability. The coupled electromechanical analysis shows that due to the nonlinearity of the electrostatic load, the snap-through occurs at a lower displacement than in the case of the “mechanical” load. Moreover, the study concludes that actuation of plates of realistic dimensions can be achieved by reasonably low voltages.Copyright
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference | 2015
Lior Medina; Rivka Gilat; Slava Krylov
Curved beams subjected to transverse force may exhibit a latching phenomena, namely remain in their buckled configuration under zero force such that an opposite force is required for their release. In this study, we investigate the latching in bistable electrostatically actuated prestressed curved beams. The analysis is based on a reduced order (RO) model resulting from the Galerkin decomposition with buckling modes of a straight beam as base functions. Criteria for the existence of latching are derived in terms of the beam geometric parameters and the axial load. Two conditions are formulated: A necessary criterion establishes the appearance of latching on the symmetric response curve and a sufficient condition which assures the existence of latching in the presence of bifurcations. A comparison between the model results and those obtained by numerical analysis shows good agreement up to a certain elevation. It is noted that as the latching is not affected by the nonlinear electrostatic load, the obtained criteria stand for all types of loading.Copyright
Volume 5: 6th International Conference on Micro- and Nanosystems; 17th Design for Manufacturing and the Life Cycle Conference | 2012
Lior Medina; Rivka Gilat; Slava Krylov
The asymmetric buckling of a shallow initially curved stress-free micro beam subjected to distributed nonlinear deflection-dependent electrostatic force is studied. The analysis is based on a two degrees of freedom reduced order (RO) model, resulting from the Galerkin decomposition with linear undamped eigen-modes of a straight beam used as the base functions. Simple approximate expressions are derived defining the geometric parameters of beams for which an asymmetric response bifurcates from the symmetric one. The necessary criterion establishes the conditions for the appearance of bifurcation points on the unstable branch of the symmetric response curve; the sufficient criterion assures a realistic asymmetric buckling bifurcating from the stable branches of the curve. It is shown that while the symmetry breaking conditions are affected by the nonlinearity of the electrostatic force, its influence is less pronounced than in the case of the symmetric snap-through criterion. A comparison between the RO model results and those obtained by direct numerical analysis shows good agreement between the two and indicates that the obtained criteria can be used to predict non-symmetric buckling in electrostatically actuated bistable micro beams.Copyright
International Journal of Solids and Structures | 2012
Lior Medina; Rivka Gilat; Slava Krylov
Sensors and Actuators A-physical | 2014
Lior Medina; Rivka Gilat; Bojan Ilic; Slava Krylov
International Journal of Solids and Structures | 2014
Lior Medina; Rivka Gilat; Slava Krylov