Liraz Larush
Hebrew University of Jerusalem
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Liraz Larush.
Journal of The Electrochemical Society | 2008
Oren Mizrahi; Nir Amir; Elad Pollak; Orit Chusid; Vered Marks; Hugo E. Gottlieb; Liraz Larush; Ella Zinigrad; Doron Aurbach
Electrolyte solutions for rechargeable Mg batteries were developed, based on reaction products of phenyl magnesium chloride (PhMgCl) Lewis base and Alcl 3 Lewis acid in ethers. The transmetallation of these ligands forms solutions with Mg x Cl + y and AlCl 4-n Ph n - ions as the major ionic species, as analyzed by multinuclei nuclear magnetic resonance spectroscopy. Tetrahydrofuran (THF) solutions of (PhMgCl) 2 -Alcl 3 exhibit optimal properties: highly reversible Mg deposition (100% cycling efficiency) with low overvoltage: <0.2 V and electrochemical windows wider than 3 V. A specific conductivity of 2-5 X 10 -3 Ω -1 cm -1 could be measured between -10 and 30°C for these solutions, similar to that of standard electrolyte solutions for Li batteries. Mg ions intercalate reversibly with Chevrel phase (Mg x Mo 6 S 8 ) cathodes in these solutions. These systems exhibit high thermal stability. The solutions may enable the use of high voltage, high-capacity Mg insertion materials as cathodes and hence open the door for research and development of high-energy density, rechargeable Mg batteries.
Journal of The Electrochemical Society | 2010
Ortal Haik; Nicole Leifer; Zvi Samuk-Fromovich; Ella Zinigrad; Boris Markovsky; Liraz Larush; Yossi Goffer; Gil Goobes; Doron Aurbach
This study examined the aging mechanisms of layered cathode materials for lithium batteries upon exposure to air and the influence of this aging on the thermal stability and electrochemical performance of these materials composed of solid solutions of LiMO 2 (M = [MnNi] or [MnNiCo]) in Li cells. A unique methodology for the quantitative characterization of surface carbonates on LiMO 2 compounds based on differential scanning calorimeter (DSC) measurements was developed. Correlations were made between the formation of Li 2 CO 3 and other carbonates on the surface of the lithiated metal oxide powders and the changes in the structure and electrochemical performance of the cathode materials. The techniques used included solid-state NMR, X-ray photelectron spectroscopy, Fourier transform IR, high resolution scanning electron microscopy, high resolution transmission electron microscopy and the thermal analysis, DSC, and accelerating rate calorimetry in conjunction with electrochemical measurements. .
Science Advances | 2016
Amol Ashok Pawar; Gabriel Saada; Ido Cooperstein; Liraz Larush; Joshua A. Jackman; Seyed R. Tabaei; Nam-Joon Cho; Shlomo Magdassi
Photoinitiator nanoparticles enable rapid 3D printing of hydrogels from waterborne systems using digital light printers. In the absence of water-soluble photoinitiators with high absorbance in the ultraviolet (UV)–visible range, rapid three-dimensional (3D) printing of hydrogels for tissue engineering is challenging. A new approach enabling rapid 3D printing of hydrogels in aqueous solutions is presented on the basis of UV-curable inks containing nanoparticles of highly efficient but water-insoluble photoinitiators. The extinction coefficient of the new water-dispersible nanoparticles of 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (TPO) is more than 300 times larger than the best and most used commercially available water-soluble photoinitiator. The TPO nanoparticles absorb significantly in the range from 385 to 420 nm, making them suitable for use in commercially available, low-cost, light-emitting diode–based 3D printers using digital light processing. The polymerization rate at this range is very fast and enables 3D printing that otherwise is impossible to perform without adding solvents. The TPO nanoparticles were prepared by rapid conversion of volatile microemulsions into water-dispersible powder, a process that can be used for a variety of photoinitiators. Such water-dispersible photoinitiator nanoparticles open many opportunities to enable rapid 3D printing of structures prepared in aqueous solutions while bringing environmental advantages by using low-energy curing systems and avoiding the need for solvents.
Nanomedicine: Nanotechnology, Biology and Medicine | 2014
Michal Mizrahi; Yael Friedman-Levi; Liraz Larush; Kati Frid; Orli Binyamin; Dvir Dori; Nina Fainstein; Haim Ovadia; Tamir Ben-Hur; Shlomo Magdassi; Ruth Gabizon
UNLABELLED Neurodegenerative diseases generate the accumulation of specific misfolded proteins, such as PrP(Sc) prions or A-beta in Alzheimers diseases, and share common pathological features, like neuronal death and oxidative damage. To test whether reduced oxidation alters disease manifestation, we treated TgMHu2ME199K mice, modeling for genetic prion disease, with Nano-PSO, a nanodroplet formulation of pomegranate seed oil (PSO). PSO comprises large concentrations of a unique polyunsaturated fatty acid, Punicic acid, among the strongest natural antioxidants. Nano-PSO significantly delayed disease presentation when administered to asymptomatic TgMHu2ME199K mice and postponed disease aggravation in already sick mice. Analysis of brain samples revealed that Nano-PSO treatment did not decrease PrP(Sc) accumulation, but rather reduced lipid oxidation and neuronal loss, indicating a strong neuroprotective effect. We propose that Nano-PSO and alike formulations may be both beneficial and safe enough to be administered for long years to subjects at risk or to those already affected by neurodegenerative conditions. FROM THE CLINICAL EDITOR This team of authors report that a nanoformulation of pomegranade seed oil, containing high levels of a strong antioxidant, can delay disease onset in a mouse model of genetic prion diseases, and the formulation also indicates a direct neuroprotective effect.
Nanomedicine: Nanotechnology, Biology and Medicine | 2011
Liraz Larush; Shlomo Magdassi
AIMS Indocyanine green (ICG) is a US FDA-approved near-infrared fluorescent, water-soluble dye used for diagnostics in vitro and in vivo. The aim of this study was to develop insoluble nanoparticles based on a cationic polymer, ICG and a targeting molecule. The particles are intended for oral administration in the colon, having fluorescence in near-infrared, thus enabling remote detection. MATERIALS & METHODS An aqueous dispersion of particles formed from Eudragit-RS by simple precipitation method possessing a mean size of approximately 100 nm and zeta potential of +16 mV was produced. RESULTS These particles are capable of binding both ICG and fluorescein isothiocyanate-IgG via noncovalent interactions. These composite particles retain the emission characteristics of the fluorescent precursors and also exhibit potential specific recognition ability. The particles were stable in intestinal fluid and are composed only of materials that are FDA approved. CONCLUSION The nanoparticles may be suitable for in vivo imaging and therapy by oral delivery systems.
Experimental Dermatology | 2012
Marina Frušić-Zlotkin; Yoram Soroka; Ran Tivony; Liraz Larush; Lilian Verkhovsky; François Brégégère; Rami Neuman; Shlomo Magdassi; Yoram Milner
Systemic antipsoriatic therapies have potentially life‐threatening, long‐term side effects. The efficacy of topical drugs is poor, but may be improved by the use of delivery systems based on drug nanoparticles. To produce nanoparticles (NP) composed of cyclosporin A, a classical antipsoriatic drug, and to investigate their penetration and biological effects in human skin affected by psoriatic symptoms, poly‐ε‐caprolactone (PCL) and cyclosporin A (CsA) NP were prepared by the solvent evaporation method. Skin penetration was followed using fluorescently labeled NP in human skin organ cultures (hSOC). Psoriatic symptoms were mimicked in hSOC by the treatment with epidermal growth factor (EGF) and bacterial lipopolysaccharide (LPS). Cell viability in hSOC was evaluated by the resazurin test, and cytokine secretion into the growth medium was measured by immunodetection. We showed that topically applied NP diffused throughout the epidermis within two hours and through the dermis within the following day. They significantly reduced the secretion of inflammatory cytokines IL–1β, IL–6, IL–8, IL–20 and IL–23. At active doses, no cytotoxicity was detected. This type of NP display relevant properties for the use as topical anti‐inflammatory agents and may help to resorb psoriatic lesions.
International Journal of Nanomedicine | 2015
Orli Binyamin; Liraz Larush; Kati Frid; Guy Keller; Yael Friedman-Levi; Haim Ovadia; Oded Abramsky; Shlomo Magdassi; Ruth Gabizon
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system and is associated with demyelination, neurodegeneration, and sensitivity to oxidative stress. In this work, we administered a nanodroplet formulation of pomegranate seed oil (PSO), denominated Nano-PSO, to mice induced for experimental autoimmune encephalomyelitis (EAE), an established model of MS. PSO comprises high levels of punicic acid, a unique polyunsaturated fatty acid considered as one of the strongest natural antioxidants. We show here that while EAE-induced mice treated with natural PSO presented some reduction in disease burden, this beneficial effect increased significantly when EAE mice were treated with Nano-PSO of specific size nanodroplets at much lower concentrations of the oil. Pathological examinations revealed that Nano-PSO administration dramatically reduced demyelination and oxidation of lipids in the brains of the affected animals, which are hallmarks of this severe neurological disease. We propose that novel formulations of natural antioxidants such as Nano-PSO may be considered for the treatment of patients suffering from demyelinating diseases. On the mechanistic side, our results demonstrate that lipid oxidation may be a seminal feature in both demyelination and neurodegeneration.
Neurobiology of Disease | 2017
Orli Binyamin; Guy Keller; Kati Frid; Liraz Larush; Shlomo Magdassi; Ruth Gabizon
We have shown previously that Nano-PSO, a nanodroplet formulation of pomegranate seed oil, delayed progression of neurodegeneration signs when administered for a designated period of time to TgMHu2ME199K mice, modeling for genetic prion disease. In the present work, we treated these mice with a self-emulsion formulation of Nano-PSO or a parallel Soybean oil formulation from their day of birth until a terminal disease stage. We found that long term Nano-PSO administration resulted in increased survival of TgMHu2ME199K lines by several months. Interestingly, initiation of treatment at day 1 had no clinical advantage over initiation at day 70, however cessation of treatment at 9months of age resulted in the rapid loss of the beneficial clinical effect. Pathological studies revealed that treatment with Nano-PSO resulted in the reduction of GAG accumulation and lipid oxidation, indicating a strong neuroprotective effect. Contrarily, the clinical effect of Nano-PSO did not correlate with reduction in the levels of disease related PrP, the main prion marker. We conclude that long term administration of Nano-PSO is safe and may be effective in the prevention/delay of onset of neurodegenerative conditions such as genetic CJD.
Proceedings of SPIE | 2013
Eran Maimon; Abraham Kribus; Yuri Flitsanov; Oleg Shkolnik; Daniel Feuermann; Camille Zwicker; Liraz Larush; Daniel Mandler; Shlomo Magdassi
Spectrally selective coatings are common in low and medium temperature solar applications from solar water heating collectors to parabolic trough absorber tubes. They are also an essential element for high efficiency in higher temperature Concentrating Solar Power (CSP) systems. Selective coatings for CSP are usually prepared using advanced expensive methods such as sputtering and vapor deposition. In this work, coatings were prepared using low-cost wet-chemistry methods. Solutions based on Alumina and Silica sol gel were prepared and then dispersed with black spinel pigments. The black dispersions were applied by spray/roll coating methods on stainless steel plates. The spectral emissivity of sample coatings was measured in the temperature range between 200 and 500°C, while the spectral absorptivity was measured at room temperature and 500°C. Emissivity at wavelengths of 0.4–1.7 μm was evaluated indirectly using multiple measurements of directional reflectivity. Emissivity at wavelengths 2–14 μm was measured directly using a broadband IR camera that acquires the radiation emitted from the sample, and a range of spectral filters. Emissivity measurement results for a range of coated samples will be presented, and the impact of coating thickness, pigment loading, and surface preparation will be discussed.
Journal of Materials Chemistry B | 2018
Biao Zhang; Shiya Li; Hardik Hingorani; Ahmad Serjouei; Liraz Larush; Amol Ashok Pawar; Wei Huang Goh; Amir Hosein Sakhaei; Michinao Hashimoto; Kavin Kowsari; Shlomo Magdassi; Qi Ge
We report a method to prepare highly stretchable and UV curable hydrogels for high resolution DLP based 3D printing. Hydrogel solutions were prepared by mixing self-developed high-efficiency water-soluble TPO nanoparticles as the photoinitiator with an acrylamide-PEGDA (AP) based hydrogel precursor. The TPO nanoparticles make AP hydrogels UV curable, and thus compatible with the DLP based 3D printing technology for the fabrication of complex hydrogel 3D structures with high-resolution and high-fidelity (up to 7 μm). The AP hydrogel system ensures high stretchability, and the printed hydrogel sample can be stretched by more than 1300%, which is the most stretchable 3D printed hydrogel. The printed stretchable hydrogels show an excellent biocompatibility, which allows us to directly 3D print biostructures and tissues. The great optical clarity of the AP hydrogels offers the possibility of 3D printing contact lenses. More importantly, the AP hydrogels are capable of forming strong interfacial bonding with commercial 3D printing elastomers, which allows us to directly 3D print hydrogel-elastomer hybrid structures such as a flexible electronic board with a conductive hydrogel circuit printed on an elastomer matrix.