Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa A. Dailey is active.

Publication


Featured researches published by Lisa A. Dailey.


Environmental Health Perspectives | 2005

Seasonal Variations in Air Pollution Particle-Induced Inflammatory Mediator Release and Oxidative Stress

Susanne Becker; Lisa A. Dailey; Joleen M. Soukup; Steven C. Grambow; Robert B. Devlin; Yuh-Chin T. Huang

Health effects associated with particulate matter (PM) show seasonal variations. We hypothesized that these heterogeneous effects may be attributed partly to the differences in the elemental composition of PM. Normal human bronchial epithelial (NHBE) cells and alveolar macrophages (AMs) were exposed to equal mass of coarse [PM with aerodynamic diameter of 2.5–10 μm (PM2.5–10)], fine (PM2.5), and ultrafine (PM < 0.1) ambient PM from Chapel Hill, North Carolina, during October 2001 (fall) and January (winter), April (spring), and July (summer) 2002. Production of interleukin (IL)-8, IL-6, and reactive oxygen species (ROS) was measured. Coarse PM was more potent in inducing cytokines, but not ROSs, than was fine or ultrafine PM. In AMs, the October coarse PM was the most potent stimulator for IL-6 release, whereas the July PM consistently stimulated the highest ROS production measured by dichlorofluorescein acetate and dihydrorhodamine 123 (DHR). In NHBE cells, the January and the October PM were consistently the strongest stimulators for IL-8 and ROS, respectively. The July PM increased only ROS measured by DHR. PM had minimal effects on chemiluminescence. Principal-component analysis on elemental constituents of PM of all size fractions identified two factors, Cr/Al/Si/Ti/Fe/Cu and Zn/As/V/Ni/Pb/Se, with only the first factor correlating with IL-6/IL-8 release. Among the elements in the first factor, Fe and Si correlated with IL-6 release, whereas Cr correlated with IL-8 release. These positive correlations were confirmed in additional experiments with PM from all 12 months. These results indicate that elemental constituents of PM may in part account for the seasonal variations in PM-induced adverse health effects related to lung inflammation.


American Journal of Physiology-lung Cellular and Molecular Physiology | 1998

Activation of MAPKs in human bronchial epithelial cells exposed to metals

James M. Samet; Lee M. Graves; Jacqueline Quay; Lisa A. Dailey; Robert B. Devlin; Andrew J. Ghio; Weidong Wu; Philip A. Bromberg; William Reed

We have previously shown that in vitro exposure to metallic compounds enhances expression of interleukin (IL)-6, IL-8, and tumor necrosis factor-alpha in human bronchial epithelial cells. To characterize signaling pathways involved in metal-induced expression of inflammatory mediators and to identify metals that activate them, we studied the effects of As, Cr, Cu, Fe, Ni, V, and Zn on the mitogen-activated protein kinases (MAPK) extracellular receptor kinase (ERK), c-Jun NH2-terminal kinase (JNK), and P38 in BEAS cells. Noncytotoxic concentrations of As, V, and Zn induced a rapid phosphorylation of MAPK in BEAS cells. Activity assays confirmed marked activation of ERK, JNK, and P38 in BEAS cells exposed to As, V, and Zn. Cr and Cu exposure resulted in a relatively small activation of MAPK, whereas Fe and Ni did not activate MAPK under these conditions. Similarly, the transcription factors c-Jun and ATF-2, substrates of JNK and P38, respectively, were markedly phosphorylated in BEAS cells treated with As, Cr, Cu, V, and Zn. The same acute exposure to As, V, or Zn that activated MAPK was sufficient to induce a subsequent increase in IL-8 protein expression in BEAS cells. These data suggest that MAPK may mediate metal-induced expression of inflammatory proteins in human bronchial epithelial cells.


Inhalation Toxicology | 1999

METALS ASSOCIATED WITH BOTH THE WATER-SOLUBLE AND INSOLUBLE FRACTIONS OF AN AMBIENT AIR POLLUTION PARTICLE CATALYZE AN OXIDATIVE STRESS

Andrew J. Ghio; Jacqueline G. Stonehuerner; Lisa A. Dailey; Jacqueline D. Carter

One potential mechanism of injury mediated by air pollution particles is through metal-catalyzed oxidant generation. In one emission source particle, soluble metals have been associated with biological effect and toxicity. However, a majority of metals in ambient air pollution particles can be associated with insoluble components. We tested the hypothesis that concentrations of catalytically active metal in ambient air pollution particles are not equivalent to the concentrations of water-soluble metal. Twelve filters collected from the North Provo, UT, monitoring station were agitated in deionized water. Both the aqueous extract and pellet were isolated, lyophilized, and defined as the water-soluble and insoluble fractions, respectively. The fractions were chemically characterized and ionizable concentrations of metals were measured using inductively coupled plasma emission spectroscopy. While the water-soluble fraction had significantly greater concentrations of ionizable metals per unit mass, the insoluble fraction also had measurable quantities. In vitro oxidant generation by the two fractions, measured as thiobarbituric acid-reactive-products of deoxyribose, corresponded to the concentrations of ionizable rather than total metals. The release of interleukin-8 by cultured respiratory epithelial cells after incubation with the two fractions also coincided with the ionizable metal concentrations. Finally, neutrophil influx and lavage protein levels 24 h after instillation of the two fractions in rats reflected the ionizable metal concentrations, in vitro oxidative stress, and mediator release. We conclude that catalytically active metals can be measured in both the soluble and insoluble fractions of an ambient air pollution particle. These metals corresponded to the biological activity of the two fractions. While in greater concentration in the water-soluble fraction, larger total quantities of catalytically and biologically active metals are likely to be associated with the insoluble fraction as a result of the abundance of the latter.


Environmental Health Perspectives | 2009

Disruption of microRNA expression in human airway cells by diesel exhaust particles is linked to tumorigenesis-associated pathways.

Melanie J. Jardim; Rebecca C. Fry; Ilona Jaspers; Lisa A. Dailey; David Diaz-Sanchez

Background Particulate matter (PM) is associated with adverse airway health effects; however, the underlying mechanism in disease initiation is still largely unknown. Recently, microRNAs (miRNAs; small noncoding RNAs) have been suggested to be important in maintaining the lung in a disease-free state through regulation of gene expression. Although many studies have shown aberrant miRNA expression patterns in diseased versus healthy tissue, little is known regarding whether environmental agents can induce such changes. Objectives We used diesel exhaust particles (DEP), the largest source of emitted airborne PM, to investigate pollutant-induced changes in miRNA expression in airway epithelial cells. We hypothesized that DEP exposure can lead to disruption of normal miRNA expression patterns, representing a plausible novel mechanism through which DEP can mediate disease initiation. Methods Human bronchial epithelial cells were grown at air–liquid interface until they reached mucociliary differentiation. After treating the cells with 10 μg/cm2 DEP for 24 hr, we analyzed total RNA for miRNA expression using microarray profile analysis and quantitative real-time polymerase chain reaction. Results DEP exposure changed the miRNA expression profile in human airway epithelial cells. Specifically, 197 of 313 detectable miRNAs (62.9%) were either up-regulated or down-regulated by 1.5-fold. Molecular network analysis of putative targets of the 12 most altered miRNAs indicated that DEP exposure is associated with inflammatory responses pathways and a strong tumorigenic disease signature. Conclusions Alteration of miRNA expression profiles by environmental pollutants such as DEP can modify cellular processes by regulation of gene expression, which may lead to disease pathogenesis.


American Journal of Respiratory and Critical Care Medicine | 2008

Particulate matter in cigarette smoke alters iron homeostasis to produce a biological effect.

Andrew J. Ghio; Elizabeth D. Hilborn; Jacqueline G. Stonehuerner; Lisa A. Dailey; Jacqueline D. Carter; Judy H. Richards; Kay M. Crissman; Robert Foronjy; Dale Uyeminami; Kent E. Pinkerton

RATIONALE Lung injury after cigarette smoking is related to particle retention. Iron accumulates with the deposition of these particles. OBJECTIVES We tested the postulate that (1) injury after smoking correlates with exposure to the particulate fraction of cigarette smoke, (2) these particles alter iron homeostasis, triggering metal accumulation, and (3) this alteration in iron homeostasis affects oxidative stress and inflammation. METHODS Rats and human respiratory epithelial cells were exposed to cigarette smoke, filtered cigarette smoke, and cigarette smoke condensate (the particulate fraction of smoke), and indices of iron homeostasis, oxidative stress, and inflammatory injury were determined. Comparable measures were also evaluated in nonsmokers and smokers. MEASUREMENTS AND MAIN RESULTS After exposure of rats to cigarette smoke, increased lavage concentrations of iron and ferritin, serum ferritin levels, and nonheme iron concentrations in the lung and liver tissue all increased. Lavage ascorbate concentrations were decreased, supporting an oxidative stress. After filtering of the cigarette smoke to remove particles, most of these changes were reversed. Exposure of cultured respiratory epithelial cells to cigarette smoke condensate caused a similar accumulation of iron, metal-dependent oxidative stress, and increased IL-8 release. Lavage samples in healthy smokers and smoking patients with chronic obstructive pulmonary disease revealed elevated concentrations of both iron and ferritin relative to healthy nonsmokers. Lavage ascorbate decreased with cigarette smoking. Serum iron and ferritin levels among smokers were increased, supporting systemic accumulation of this metal after cigarette smoke exposure. CONCLUSIONS We conclude that cigarette smoke particles alter iron homeostasis, both in the lung and systemically.


Environmental Health Perspectives | 2005

Pollutant Particles Produce Vasoconstriction and Enhance MAPK Signaling via Angiotensin Type I Receptor

Zhuowei Li; Jacqueline D. Carter; Lisa A. Dailey; Yuh-Chin T. Huang

Exposure to particulate matter (PM) is associated with acute cardiovascular mortality and morbidity, but the mechanisms are not entirely clear. In this study, we hypothesized that PM may activate the angiotensin type 1 receptor (AT1R), a G protein-coupled receptor that regulates inflammation and vascular function. We investigated the acute effects of St. Louis, Missouri, urban particles (UPs; Standard Reference Material 1648) on the constriction of isolated rat pulmonary artery rings and the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38 mitogen-activated protein kinases (MAPKs) in human pulmonary artery endothelial cells with or without losartan, an antagonist of AT1R. UPs at 1–100 μg/mL induced acute vaso-constriction in pulmonary artery. UPs also produced a time- and dose-dependent increase in phosphorylation of ERK1/2 and p38 MAPK. Losartan pretreatment inhibited both the vasoconstriction and the activation of ERK1/2 and p38. The water-soluble fraction of UPs was sufficient for inducing ERK1/2 and p38 phosphorylation, which was also losartan inhibitable. Copper and vanadium, two soluble transition metals contained in UPs, induced pulmonary vasoconstriction and phosphorylation of ERK1/2 and p38, but only the phosphorylation of p38 was inhibited by losartan. The UP-induced activation of ERK1/2 and p38 was attenuated by captopril, an angiotensin-converting enzyme inhibitor. These results indicate that activation of the local renin–angiotensin system may play an important role in cardiovascular effects induced by PM.


American Journal of Respiratory Cell and Molecular Biology | 2012

Distinct MicroRNA Expression in Human Airway Cells of Asthmatic Donors Identifies a Novel Asthma-Associated Gene

Melanie J. Jardim; Lisa A. Dailey; Robert Silbajoris; David Diaz-Sanchez

Airway inflammation is a hallmark of asthma, and suggests a dysregulation of homeostatic mechanisms. MicroRNAs (miRNAs) are key regulators of gene expression necessary for the proper function of cellular processes. We tested the hypothesis that differences between healthy and asthmatic subjects may be a result of distinct miRNA cellular profiles that lead to differential regulation of inflammatory genes. We collected human bronchial epithelial cells from seven healthy donors and seven patients with asthma, and profiled miRNA expression, using the Affymetrix (Santa Clara, CA) miRNA array platform. Results were confirmed according to quantitative RT-PCR on RNA isolated from 16 healthy and 16 asthmatic donors. We identified 66 miRNAs that were significantly different (≥ 1.5-fold; P ≤ 0.05) between the two groups, and validated three of them in epithelial cells from 16 asthmatic and 16 healthy subjects. Molecular network analysis indicated that putative targets were principally involved in regulating the expression of inflammatory pathway genes (P ≤ 10(-4)). Our analysis confirmed the prediction that the expression of IL-8, Cox2, and TNF-α was up-regulated in asthmatic cells, whereas the expression of IL-6 was lower compared with that in healthy control subjects. Network analysis was also used to identify a novel asthma-associated gene. The top-ranked predicted target of the highly down-regulated miRNA-203 in asthmatic cells was the aquaporin gene AQP4. Its expression was confirmed to be significantly higher in cells from patients with asthma. Overall, these data suggest that the heightened inflammatory pathway activation observed in patients with asthma may be attributed to underlying aberrant miRNA expression.


Occupational and Environmental Medicine | 2012

Exposure to wood smoke particles produces inflammation in healthy volunteers

Andrew J. Ghio; Joleen M. Soukup; Martin Case; Lisa A. Dailey; Judy H. Richards; Jon Berntsen; Robert B. Devlin; Susan Stone; Ana G. Rappold

Objectives Human exposure to wood smoke particles (WSP) impacts on human health through changes in indoor air quality, exposures from wild fires, burning of biomass and air pollution. This investigation tested the postulate that healthy volunteers exposed to WSP would demonstrate evidence of both pulmonary and systemic inflammation. Methods Ten volunteers were exposed to filtered air and, 3 weeks or more later, WSP. Each exposure included alternating 15 min of exercise and 15 min of rest for a total duration of 2 h. Wood smoke was generated by heating an oak log on an electric element and then delivered to the exposure chamber. Endpoints measured in the volunteers included symptoms, pulmonary function tests, measures of heart rate variability and repolarisation, blood indices and analysis of cells and fluid obtained during bronchoalveolar lavage. Results Mean particle mass for the 10 exposures to air and WSP was measured using the mass of particles collected on filters and found to be below the detectable limit and 485±84 μg/m3, respectively (mean±SD). There was no change in either symptom prevalence or pulmonary function with exposure to WSP. At 20 h after wood smoke exposure, blood tests demonstrated an increased percentage of neutrophils, and bronchial and bronchoalveolar lavage revealed a neutrophilic influx. Conclusions We conclude that exposure of healthy volunteers to WSP may be associated with evidence of both systemic and pulmonary inflammation.


Inhalation Toxicology | 2008

Source apportionment of particulate matter in the U.S. and associations with lung inflammatory markers.

Rachelle M. Duvall; Gary A. Norris; Lisa A. Dailey; Janet M. Burke; John K. McGee; M. Ian Gilmour; Terry Gordon; Robert B. Devlin

Size-fractionated particulate matter (PM) samples were collected from six U.S. cities and chemically analyzed as part of the Multiple Air Pollutant Study. Particles were administered to cultured lung cells and the production of three different proinflammatory markers was measured to explore the association between the health effect markers and PM. Ultrafine, fine, and coarse PM samples were collected between December 2003 and May 2004 over a 4-wk period in each city. Filters were pooled for each city and the PM samples were extracted then analyzed for trace metals, ions, and elemental carbon. Particle extracts were applied to cultured human primary airway epithelial cells, and the secreted levels of interleukin-8 (IL-8), heme oxygenase-1, and cyclooxygenase-2 were measured 1 and 24 h following exposure. Fine PM sources were quantified by the chemical mass balance (CMB) model. The relationship between toxicological measures, PM sources, and individual species were evaluated using linear regression. Ultrafine and fine PM mass were associated with increases in IL-8 (r2 = .80 for ultrafine and r2 = .52 for fine). Sources of fine PM and their relative contributions varied across the sampling sites and a strong linear association was observed between IL-8 and secondary sulfate from coal combustion (r2 = .79). Ultrafine vanadium, lead, copper, and sulfate were also associated with increases in IL-8. Increases in inflammatory markers were not observed for coarse PM mass and source markers. These findings suggest that certain PM size fractions and sources are associated with markers of lung injury or inflammation.


Inhalation Toxicology | 2007

Comparative Toxicity of Size-Fractionated Airborne Particulate Matter Obtained from Different Cities in the United States

M. Ian Gilmour; John K. McGee; Rachelle M. Duvall; Lisa A. Dailey; Mary J. Daniels; Elizabeth Boykin; Seung Hyun Cho; Donald L. Doerfler; Terry Gordon; Robert B. Devlin

Hundreds of epidemiological studies have shown that exposure to ambient particulate matter (PM) is associated with dose-dependent increases in morbidity and mortality. While early reports focused on PM less than 10 μm (PM10), numerous studies have since shown that the effects can occur with PM stratified into ultrafine (UF), fine (FI), and coarse (CO) size modes despite the fact that these materials differ significantly in both evolution and chemistry. Furthermore the chemical makeup of these different size fractions can vary tremendously depending on location, meteorology, and source profile. For this reason, high-volume three-stage particle impactors with the capacity to collect UF, FI, and CO particles were deployed to four different locations in the United States (Seattle, WA; Salt Lake City, UT; Sterling Forest and South Bronx, NY), and weekly samples were collected for 1 mo in each place. The particles were extracted, assayed for a standardized battery of chemical components, and instilled into mouse lungs (female BALB/c) at doses of 25 and 100 μg. Eighteen hours later animals were euthanized and parameters of injury and inflammation were monitored in the bronchoalveolar lavage fluid and plasma. Of the four locations, the South Bronx coarse fraction was the most potent sample in both pulmonary and systemic biomarkers, with a strong increase in lung inflammatory cells as well as elevated levels of creatine kinase in the plasma. These effects did not correlate with lipopolysaccharide (LPS) or total zinc or sulfate content, but were associated with total iron. Receptor source modeling on the PM2.5 samples showed that the South Bronx sample was heavily influenced by emissions from coal fired power plants (31%) and mobile sources (22%). Further studies will assess how source profiles correlate with the observed effects for all locations and size fractions.

Collaboration


Dive into the Lisa A. Dailey's collaboration.

Top Co-Authors

Avatar

Andrew J. Ghio

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Robert B. Devlin

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Joleen M. Soukup

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

James M. Samet

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Silbajoris

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Jacqueline D. Carter

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Michael C. Madden

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Philip A. Bromberg

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jacqueline G. Stonehuerner

United States Environmental Protection Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge