Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joleen M. Soukup is active.

Publication


Featured researches published by Joleen M. Soukup.


Environmental Health Perspectives | 2005

Seasonal Variations in Air Pollution Particle-Induced Inflammatory Mediator Release and Oxidative Stress

Susanne Becker; Lisa A. Dailey; Joleen M. Soukup; Steven C. Grambow; Robert B. Devlin; Yuh-Chin T. Huang

Health effects associated with particulate matter (PM) show seasonal variations. We hypothesized that these heterogeneous effects may be attributed partly to the differences in the elemental composition of PM. Normal human bronchial epithelial (NHBE) cells and alveolar macrophages (AMs) were exposed to equal mass of coarse [PM with aerodynamic diameter of 2.5–10 μm (PM2.5–10)], fine (PM2.5), and ultrafine (PM < 0.1) ambient PM from Chapel Hill, North Carolina, during October 2001 (fall) and January (winter), April (spring), and July (summer) 2002. Production of interleukin (IL)-8, IL-6, and reactive oxygen species (ROS) was measured. Coarse PM was more potent in inducing cytokines, but not ROSs, than was fine or ultrafine PM. In AMs, the October coarse PM was the most potent stimulator for IL-6 release, whereas the July PM consistently stimulated the highest ROS production measured by dichlorofluorescein acetate and dihydrorhodamine 123 (DHR). In NHBE cells, the January and the October PM were consistently the strongest stimulators for IL-8 and ROS, respectively. The July PM increased only ROS measured by DHR. PM had minimal effects on chemiluminescence. Principal-component analysis on elemental constituents of PM of all size fractions identified two factors, Cr/Al/Si/Ti/Fe/Cu and Zn/As/V/Ni/Pb/Se, with only the first factor correlating with IL-6/IL-8 release. Among the elements in the first factor, Fe and Si correlated with IL-6 release, whereas Cr correlated with IL-8 release. These positive correlations were confirmed in additional experiments with PM from all 12 months. These results indicate that elemental constituents of PM may in part account for the seasonal variations in PM-induced adverse health effects related to lung inflammation.


Experimental Lung Research | 2003

RESPONSE OF HUMAN ALVEOLAR MACROPHAGES TO ULTRAFINE, FINE, AND COARSE URBAN AIR POLLUTION PARTICLES

Susanne Becker; Joleen M. Soukup; Constantinos Sioutas; Flemming R. Cassee

In the lower airways, macrophages are important regulators of inflammation and indispensable in their antimicrobial activities. Thus, air pollution particles, which modulate airway macrophage host defenses may, in susceptible individuals, increase severity of inflammatory and infectious disease. In the present study, size fractionated, ultrafine (UF), fine (PM 0.1-2.5) , and coarse (PM 2.5-10) particulate matter (PM) were collected from 2 urban sites in the Netherlands, and were compared for effects on human alveolar macrophages (AM). Inflammatory cytokine production, phagocytosis, and expression of phagocyte receptor CD11b were assessed in particle-exposed AM. Interleukin (IL)-6 levels induced by PM 2.5-10 (20411 pg/mL) were >10-fold higher than induced by PM 0.1-2.5 (1781 pg/mL). Levels induced by PM 0.1-2.5 were 2- to 3-fold higher than induced by UF (770 pg/mL) when cells were exposed to the same particle mass. Cytokine induction by the PM was inhibited by antibody to CD14 and required the presence of serum for optimal stimulation, implying that bacterial products or endotoxin were stimulatory moieties in both coarse and fine particulate matter. Phagocytosis of opsonized yeast was inhibited by coarse more than by fine PM, as was yeast-induced oxidative burst. Coarse particles decreased CD11b expression more than fine PM. The UF did not affect these functions. Taken together, these results suggest that PM recognition by human AM involves receptors evolved to recognize microbial cell structures, and that microbial products preferentially found in the coarse particle fraction of PM may be involved in inflammatory events and decreased pulmonary defenses associated with exposure to pollution particles.


Toxicology in Vitro | 2002

Differential particulate air pollution induced oxidant stress in human granulocytes, monocytes and alveolar macrophages ☆

Susanne Becker; Joleen M. Soukup; Jane E. Gallagher

It has been proposed that oxidant stress of cells in the lung is one of the underlying mechanisms of particulate pollution-induced exacerbation of lung disease. Individuals who are considered most sensitive to particulate pollution are those with pre-existing airways inflammation, such as chronic obstructive pulmonary disease (COPD), lung infection or asthma. These diseases are characterized by a presence of inflammatory cells in the airways including neutrophils (PMN), eosinophils and monocytes (Mo), and increased numbers of alveolar macrophages (AM). These cells have a high capacity for production of oxygen radicals, as compared to other cell types of the lung. To assess the oxidative response of these various cell types to pollution particles of various sources, luminol-dependent chemiluminescence was employed. Particles including transition metal-rich residual oil fly ashes (ROFAs), coal fly ashes, diesel, SiO2, TiO2 and fugitive dusts were co-cultured with AM, Mo and PMN in a dose range of 10-100 microg/2 x 10(5) cells and chemiluminescence determined following a 20-min interaction. A strong oxidant response of AM was restricted to oil fly ashes, while the PMN were most reactive to the dusts containing aluminium silicate. In general, the Mo response was less vigorous, but overlapped both AM- and PMN-stimulating dusts. However, in response to SiO2 and volcanic ash the Mo chemiluminescence exceeded that of the other cell types. Oxygen radicals generated in response to ROFA by the AM were likely to be dependent on mitochondrial processes, while the response in PMN involved the membrane NADPH oxidase complex, as determined by targeting inhibitors. The response of AM to SiO2 of various sizes and TiO2 in the fine size range obtained from different commercial sources, was highly variable, implying that composition rather than size was responsible for the oxidant response. A strong chemiluminescence response was not consistently associated with cytotoxicity in the responsive cell. Taken together, these results suggest that oxidant activation by various sources of particulate matter is cell specific. Therefore, the inflamed lung is likely to be more susceptible to harm of ambient air particulates because of the oxidant stress posed by a broader range of particles.


Journal of Toxicology and Environmental Health | 1999

EXPOSURE TO URBAN AIR PARTICULATES ALTERS THE MACROPHAGE-MEDIATED INFLAMMATORY RESPONSE TO RESPIRATORY VIRAL INFECTION

Susanne Becker; Joleen M. Soukup

Epidemiology studies associate increased pulmonary morbidity with episodes of high particulate air pollution (size range 0.1-10 microm diameter, PM10). Pneumonia, often viral in origin, is increased following episodes of high PM10 pollution. Therefore, this study was undertaken to investigate how PM10 alters airway inflammatory responses to respiratory syncytial virus (RSV), a frequent cause of viral pneumonia in infants and the elderly. Supernatants of unexposed and PM10-exposed alveolar macrophage (AM) cultured with uninfected or RSV-infected airway epithelial cells were assessed for a number of chemokines responsible for inflammatory responses in the lung. AM exposure to PM10 in the absence of infection resulted in a significant increase in interleukin (IL)-8 and macrophage inflammatory protein (MIP)-1alpha production but not in MIP-1beta or monocyte chemotactic protein (MCP)-1. AM responded to RSV infection by the production of IL-8, MIP-1alpha, MIP-1beta, and MCP-1, while RANTES was derived solely from the RSV-infected bronchial epithelial cell line BEAS-2B. In the presence of PM10, the AM response to RSV was blunted. RSV-induced MCP-1 was significantly decreased, and the levels of MIP-1 and IL-8 were lower than expected from a combined response to PM10 and RSV. Furthermore, AM analyzed for uptake of virus showed a 50% decrease in viral antigen when exposed to PM10 RSV-induced production of RANTES by epithelial cells was decreased in the presence of AM but not affected by PM10 exposure. Taken together, these results suggest that AM-regulated inflammatory responses to viral infection are altered by exposure to PM10 in a manner that may result in increased spread of infection and thus may increase viral pneumonia-related hospital admissions.


Inhalation Toxicology | 2000

SOLUBLE COMPONENTS OF UTAH VALLEY PARTICULATE POLLUTION ALTER ALVEOLAR MACROPHAGE FUNCTION IN VIVO AND IN VITRO

Joleen M. Soukup; Andrew J. Ghio; Susanne Becker

Water-soluble extracts of Utah Valley dust (UVD) have been found to cause inflammatory injury of the lung in both humans and rodents. The degree of lung damage found correlated with the metal content in the extracts. In the present study, extracts of a set of UVD PM(10) filters collected over a 3-yr span, varying in total metal content with yr 1 = yr 3 > yr 2, were used to assess effects on human alveolar macrophage (AM) function. The phagocytic activity and oxidative response of AM was investigated 24 h after segmental instillation of UVD, or after overnight in vitro culture of the extracts with AM. Using flow cytometry analysis, AM phagocytosis of fluorescently (FITC)-labeled Saccharomyces cerevisiae was inhibited following instillation of UVD1 (61%) but not by yr 2 and 3. Neither baseline oxidant activity nor phorbol ester-induced oxidant generation was affected by the dust extracts in vivo. Overnight culture of AM with UVD1 resulted in a significant decrease in the percentage of AM phagocytizing particles (30%), while no significant effect on this function was found with the other two extracts. Furthermore, only UVD1 caused an immediate oxidative response in AM, although both UVD1 and UVD3 inhibited oxidant activity in AM when the cells were incubated with the extracts overnight. The detrimental effects on AM host defenses could be due to apoptosis, which was evident in cells exposed to the UVD1 and to a much lesser extent with AM exposed to yr 2 and 3. The component(s) responsible for the toxic effects on AM in vitro were removed by pretreatment of the UVD extracts with a polycation chelating resin, chelex-100. However, since yr 1 and 3 are similar in their soluble metal content, but differ in their effects on AM phagocytosis, it is possible that the metals may not be the culprit in effects of particulate matter on AM host defense.Water-soluble extracts of Utah Valley dust (UVD) have been found to cause inflammatory injury of the lung in both humans and rodents. The degree of lung damage found correlated with the metal content in the extracts. In the present study, extracts of a set of UVD PM10 filters collected over a 3-yr span, varying in total metal content with yr 1 = yr 3 > yr 2, were used to assess effects on human alveolar macrophage (AM) function. The phagocytic activity and oxidative response of AM was investigated 24 h after segmental instillation of UVD, or after overnight in vitro culture of the extracts with AM. Using flow cytometry analysis, AM phagocytosis of fluorescently (FITC)-labeled Saccharomyces cerevisiae was inhibited following instillation of UVD1 (61%) but not by yr 2 and 3. Neither baseline oxidant activity nor phorbol ester-induced oxidant generation was affected by the dust extracts in vivo. Overnight culture of AM with UVD1 resulted in a significant decrease in the percentage of AM phagocytizing particles (30%), while no significant effect on this function was found with the other two extracts. Furthermore, only UVD1 caused an immediate oxidative response in AM, although both UVD1 and UVD3 inhibited oxidant activity in AM when the cells were incubated with the extracts overnight. The detrimental effects on AM host defenses could be due to apoptosis, which was evident in cells exposed to the UVD1 and to a much lesser extent with AM exposed to yr 2 and 3. The component(s) responsible for the toxic effects on AM in vitro were removed by pretreatment of the UVD extracts with a polycation chelating resin, chelex-100. However, since yr 1 and 3 are similar in their soluble metal content, but differ in their effects on AM phagocytosis, it is possible that the metals may not be the culprit in effects of particulate matter on AM host defense.


Occupational and Environmental Medicine | 2012

Exposure to wood smoke particles produces inflammation in healthy volunteers

Andrew J. Ghio; Joleen M. Soukup; Martin Case; Lisa A. Dailey; Judy H. Richards; Jon Berntsen; Robert B. Devlin; Susan Stone; Ana G. Rappold

Objectives Human exposure to wood smoke particles (WSP) impacts on human health through changes in indoor air quality, exposures from wild fires, burning of biomass and air pollution. This investigation tested the postulate that healthy volunteers exposed to WSP would demonstrate evidence of both pulmonary and systemic inflammation. Methods Ten volunteers were exposed to filtered air and, 3 weeks or more later, WSP. Each exposure included alternating 15 min of exercise and 15 min of rest for a total duration of 2 h. Wood smoke was generated by heating an oak log on an electric element and then delivered to the exposure chamber. Endpoints measured in the volunteers included symptoms, pulmonary function tests, measures of heart rate variability and repolarisation, blood indices and analysis of cells and fluid obtained during bronchoalveolar lavage. Results Mean particle mass for the 10 exposures to air and WSP was measured using the mass of particles collected on filters and found to be below the detectable limit and 485±84 μg/m3, respectively (mean±SD). There was no change in either symptom prevalence or pulmonary function with exposure to WSP. At 20 h after wood smoke exposure, blood tests demonstrated an increased percentage of neutrophils, and bronchial and bronchoalveolar lavage revealed a neutrophilic influx. Conclusions We conclude that exposure of healthy volunteers to WSP may be associated with evidence of both systemic and pulmonary inflammation.


The FASEB Journal | 2010

Mitochondrial dysfunction and loss of Parkinson's disease-linked proteins contribute to neurotoxicity of manganese-containing welding fumes

Krishnan Sriram; Gary X. Lin; Amy M. Jefferson; Jenny R. Roberts; Oliver Wirth; Yusuke Hayashi; Kristine Krajnak; Joleen M. Soukup; Andrew J. Ghio; Steven H. Reynolds; Vincent Castranova; Albert E. Munson; James M. Antonini

Welding generates complex metal aerosols, inhalation of which is linked to adverse health effects among welders. An important health concern of welding fume (WF) exposure is neurological dysfunction akin to Parkinsons disease (PD), thought to be mediated by manganese (Mn) in the fumes. Also, there is a proposition that welding might accelerate the onset of PD. Our recent findings link the presence of Mn in the WF with dopaminergic neurotoxicity seen in rats exposed to manual metal arc-hard surfacing (MMA-HS) or gas metal arc-mild steel (GMA-MS) fumes. To elucidate the molecular mechanisms further, we investigated the association of PD-linked (Park) genes and mitochondrial function in causing dopaminergic abnormality. Repeated instillations of the two fumes at doses that mimic ∼1 to 5 yr of worker exposure resulted in selective brain accumulation of Mn. This accumulation caused impairment of mitochondrial function and loss of tyrosine hydroxylase (TH) protein, indicative of dopaminergic injury. A fascinating finding was the altered expression of Parkin (Park2), Uchl1 (Park5), and Dj1 (Park7) proteins in dopaminergic brain areas. A similar regimen of manganese chloride (MnCl(2)) also caused extensive loss of striatal TH, mitochondrial electron transport components, and Park proteins. As mutations in PARK genes have been linked to early-onset PD in humans, and because welding is implicated as a risk factor for parkinsonism, PARK genes might play a critical role in WF-mediated dopaminergic dysfunction. Whether these molecular alterations culminate in neurobehavioral and neuropathological deficits reminiscent of PD remains to be ascertained.


Journal of Toxicology and Environmental Health | 2003

Coarse(PM(2.5-10)), fine(PM(2.5)), and ultrafine air pollution particles induce/increase immune costimulatory receptors on human blood-derived monocytes but not on alveolar macrophages.

Susanne Becker; Joleen M. Soukup

Diesel particles have been shown to possess adjuvant activity and influence the development of allergic sensitization. Also, more heterogeneous mixtures of pollution particles have been shown to affect host defenses and development of immunity in animal models. In the present study it was determined whether freshly collected particulate matter (PM 10 ) in the size ranges 2.5-10 µm (PM 2.5-10 , coarse), 0.1-2.5µm (PM 2.5 , fine), and h 0.1µm (ultrafine) in diameter affected the development of antigen presenting cells by evaluating the expression of surface receptors involved in T-cell interaction on both human alveolar macrophages (AM) and blood-derived monocytes (Mo). A Mo-AM coculture was exposed to 50 µg/ml of particles and expression of HLA-DR, CD40, CD80, and CD86 on each cell type was assessed by flow cytometry. Mo upregulated the expression of all four receptors in response to each of the particle fractions, while expression was unaffected in AM. The cells were also exposed to two model air pollution particles, diesel dust and volcanic ash, neither of which affected receptor expression. Furthermore, Mo and AM were separately exposed to the three PM size fractions and supernatants assessed for the T-helper (CD4 + ) lymphocyte chemoattractant interleukin-16 (IL-16). AM, but not Mo, produced IL-16, and this chemoattractant was released only in response to PM 2.5-10 . These data suggest that a wide size range of pollution particles contain materials that may promote antigen presentation by Mo, while the capability to specifically recruit CD4 + lymphocytes is contained in AM stimulated with the coarse PM fraction.


Environment International | 2014

Associations between ambient air pollution and blood markers of inflammation and coagulation/fibrinolysis in susceptible populations

Regina Rückerl; Regina Hampel; Susanne Breitner; Josef Cyrys; Ute Kraus; Jackie Carter; Lisa A. Dailey; Robert B. Devlin; David Diaz-Sanchez; Wolfgang Koenig; Richard P. Phipps; Robert Silbajoris; Jens Soentgen; Joleen M. Soukup; Annette Peters; Alexandra Schneider

The pathophysiological pathways linking particulate air pollution to cardiovascular disease are still not fully understood. We examined the association between ambient air pollutants and blood markers of inflammation and coagulation/fibrinolysis in three potentially susceptible populations. Three panels of non-smoking individuals were examined between 3/2007 and 12/2008: 1) with type 2 diabetes mellitus (T2D, n=83), 2) with impaired glucose tolerance (IGT, n=104), and 3) with a potential genetic predisposition which could affect detoxifying and inflammatory pathways (n=87) defined by the null polymorphism for glutathione S-transferase M1 (GSTM1) in combination with a certain single nucleotide polymorphism on the C-reactive protein (CRP) or the fibrinogen gene. Study participants had blood drawn up to seven times every four to six weeks. In total, 1765 blood samples were analysed for CRP, interleukin (IL)-6, soluble CD40 ligand (sCD40L), fibrinogen, myeloperoxidase (MPO), and plasminogen activator inhibitor-1 (PAI-1). Hourly mean values of particulate air pollutants, particle number concentrations in different size ranges and gaseous pollutants were collected at fixed monitoring sites and individual 24hour averages calculated. Associations between air pollutants and blood markers were analysed for each panel separately and taking the T2D panel and the IGT panel together, using additive mixed models adjusted for long-term time trend and meteorology. For the panel with potential genetic susceptibility, CRP and MPO increased for most lags, especially with the 5-day average exposure (% change of geometric mean and 95% confidence interval: 22.9% [12.0;34.7] for CRP and 5.0% [0.3;9.9] for MPO per interquartile range of PM2.5). Small positive associations were seen for fibrinogen while sCD40L, PAI-1 and IL-6 mostly decreased in association with air pollution concentrations. Except for positive associations for fibrinogen we did not see significant results with the two other panels. Participants with potential genetic susceptibility showed a clear association between inflammatory blood biomarkers and ambient air pollutants. Our results support the hypothesis that air pollution increases systemic inflammation especially in susceptible populations which may aggravate atherosclerotic diseases and induce multi-organ damage.


Inhalation Toxicology | 2004

Apoptotic and inflammatory effects induced by different particles in human alveolar macrophages

Yuh-Chin T. Huang; Zhuowei Li; Shirley Harder; Joleen M. Soukup

Pollutant particles induce apoptosis and inflammation, but the relationship between these two biological processes is not entirely clear. In this study, we compared the proapoptotic and proinflammatory effects of four particles: residual oil fly ash (ROFA), St. Louis particles SRM 1648 (SL), Chapel Hill PM10 (CHP), and Mount St. Helens dust (MSH). Human alveolar macrophages (AM) were incubated with these particles at 100 μg/ml. Cell death was assessed by annexin V (AV) expression, histone release, nuclear morphology, caspase 3-like activity and release of caspase 1 for apoptosis, and propidium iodide (PI) for necrosis, and inflammation was measured by interleukin (IL)-1β and IL-6. We found that particle effects on these cell death measurements varied, and ROFA affected most (four out of five) endpoints, including nuclear morphological changes. CHP and SL also caused necrosis. For cytokine release, the potency was CHP > SL > ROFA > MSH. The proapoptotic and proinflammatory effects induced by the whole particles were unaltered after the particles were washed with water. The water-soluble fraction was relatively inactive, as were individual soluble metals (V, Ni, Fe). ROFA-induced nuclear fragmentation was associated with upregulation and mitochondrial release of apoptosis-inducing factor (AIF), a caspase-independent chromatin condensation factor, and upregulation of DNase II, a lysosomal acid endonuclease. These results indicate that the potential for particles to induce apoptosis does not correlate with their proinflammatory properties, although active components for both processes reside in the water-insoluble core. Both apoptosis and inflammatory endpoints should be included when the toxicity of different pollutant particles is assessed.

Collaboration


Dive into the Joleen M. Soukup's collaboration.

Top Co-Authors

Avatar

Andrew J. Ghio

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa A. Dailey

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Robert B. Devlin

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Judy H. Richards

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Haiyan Tong

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil E. Alexis

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Robert Silbajoris

United States Environmental Protection Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge