Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa D. Watkinson is active.

Publication


Featured researches published by Lisa D. Watkinson.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer

Ravi Shukla; Nripen Chanda; Ajit Zambre; Anandhi Upendran; Kavita K. Katti; Rajesh R. Kulkarni; Satish Kumar Nune; Stan W. Casteel; Charles J. Smith; Jatin Vimal; Evan Boote; J. David Robertson; Para Kan; Hendrik Engelbrecht; Lisa D. Watkinson; Terry L. Carmack; John R. Lever; Cathy S. Cutler; Charles W. Caldwell; Raghuraman Kannan; Kattesh V. Katti

Systemic delivery of therapeutic agents to solid tumors is hindered by vascular and interstitial barriers. We hypothesized that prostate tumor specific epigallocatechin-gallate (EGCg) functionalized radioactive gold nanoparticles, when delivered intratumorally (IT), would circumvent transport barriers, resulting in targeted delivery of therapeutic payloads. The results described herein support our hypothesis. We report the development of inherently therapeutic gold nanoparticles derived from the Au-198 isotope; the range of the 198Au β-particle (approximately 11 mm in tissue or approximately 1100 cell diameters) is sufficiently long to provide cross-fire effects of a radiation dose delivered to cells within the prostate gland and short enough to minimize the radiation dose to critical tissues near the periphery of the capsule. The formulation of biocompatible 198AuNPs utilizes the redox chemistry of prostate tumor specific phytochemical EGCg as it converts gold salt into gold nanoparticles and also selectively binds with excellent affinity to Laminin67R receptors, which are over expressed in prostate tumor cells. Pharmacokinetic studies in PC-3 xenograft SCID mice showed approximately 72% retention of 198AuNP-EGCg in tumors 24 h after intratumoral administration. Therapeutic studies showed 80% reduction of tumor volumes after 28 d demonstrating significant inhibition of tumor growth compared to controls. This innovative nanotechnological approach serves as a basis for designing biocompatible target specific antineoplastic agents. This novel intratumorally injectable 198AuNP-EGCg nanotherapeutic agent may provide significant advances in oncology for use as an effective treatment for prostate and other solid tumors.


Nanomedicine: Nanotechnology, Biology and Medicine | 2010

Radioactive gold nanoparticles in cancer therapy: therapeutic efficacy studies of GA-198AuNP nanoconstruct in prostate tumor–bearing mice

Nripen Chanda; Para Kan; Lisa D. Watkinson; Ravi Shukla; Ajit Zambre; Terry L. Carmack; Hendrik Engelbrecht; John R. Lever; Kavita K. Katti; Genevieve M. Fent; Stan W. Casteel; C. Jeffrey Smith; William H. Miller; Silvia S. Jurisson; Evan Boote; J. David Robertson; Cathy S. Cutler; Marina A. Dobrovolskaia; Raghuraman Kannan; Kattesh V. Katti

UNLABELLED Biocompatibility studies and cancer therapeutic applications of nanoparticulate beta-emitting gold-198 (198Au; beta(max) = 0.96 MeV; half-life of 2.7 days) are described. Gum arabic glycoprotein (GA)-functionalized gold nanoparticles (AuNPs) possess optimum sizes (12-18 nm core diameter and 85 nm hydrodynamic diameter) to target individual tumor cells and penetrate through tumor vasculature and pores. We report the results of detailed in vivo therapeutic investigations demonstrating the high tumor affinity of GA-198AuNPs in severely compromised immunodeficient (SCID) mice bearing human prostate tumor xenografts. Intratumoral administration of a single dose of beta-emitting GA-198AuNPs (70 Gy) resulted in clinically significant tumor regression and effective control in the growth of prostate tumors over 30 days. Three weeks after administration of GA-198AuNPs, tumor volumes for the treated animals were 82% smaller as compared with tumor volume of control group. The treatment group showed only transitory weight loss in sharp contrast to the tumor-bearing control group, which underwent substantial weight loss. Pharmacokinetic studies have provided unequivocal evidence for the optimum retention of therapeutic payload of GA-198AuNPs within the tumor site throughout the treatment regimen with minimal or no leakage of radioactivity to various nontarget organs. The measurements of white and red blood cells, platelets, and lymphocytes within the treatment group resembled those of the normal SCID mice, thus providing further evidence on the therapeutic efficacy and concomitant in vivo tolerance and nontoxic features of GA-198AuNPs. FROM THE CLINICAL EDITOR In this study, the biocompatibility and cancer therapeutic applications of glycoprotein (GA) functionalized gold nanoparticles containing b-emitting Au-198 are described in SCID mice bearing human prostate tumor xenografts. The findings of significant therapeutic efficacy, good in vivo tolerance and non-toxic features make these particles ideal candidates for future human applications.


Bioconjugate Chemistry | 2010

Comparative Evaluation of Three 64Cu-Labeled E. coli Heat-Stable Enterotoxin Analogues for PET Imaging of Colorectal Cancer

Dijie Liu; Douglas Overbey; Lisa D. Watkinson; Charles J. Smith; Said Daibes-Figueroa; Timothy J. Hoffman; Leonard R. Forte; Wynn A. Volkert; Michael F. Giblin

Analogues of the E. coli heat-stable enterotoxin (STh) are currently under study as both imaging and therapeutic agents for colorectal cancer. Studies have shown that the guanylate cyclase C (GC-C) receptor is commonly expressed in colorectal cancers. It has also been shown that STh peptides inhibit the growth of tumor cells expressing GC-C. The ability to determine GC-C status of tumor tissue using in vivo molecular imaging techniques would provide a useful tool for the optimization of GC-C-targeted therapeutics. In this work, we have compared receptor binding affinities, internalization/efflux rates, and in vivo biodistribution patterns of an STh analogue linked to N-terminal DOTA, TETA, and NOTA chelating moieties and radiolabeled with Cu-64. The peptide F(19)-STh(2-19) was N-terminally labeled with three different chelating groups via NHS ester activation and characterized by RP-HPLC, ESI-MS, and GC-C receptor binding assays. The purified conjugates were radiolabeled with Cu-64 and used for in vitro internalization/efflux, in vivo biodistribution, and in vivo PET imaging studies. In vivo experiments were carried out using SCID mice bearing T84 human colorectal cancer tumor xenografts. Incorporation of DOTA-, TETA-, and NOTA-chelators at the N-terminus of the peptide F(19)-STh(2-19) resulted in IC(50)s between 1.2 and 3.2 nM. In vivo, tumor localization was similar for all three compounds, with 1.2-1.3%ID/g at 1 h pi and 0.58-0.83%ID/g at 4 h pi. The principal difference between the three compounds related to uptake in nontarget tissues, principally kidney and liver. At 1 h pi, (64)Cu-NOTA-F(19)-STh(2-19) demonstrated significantly (p < 0.05) lower uptake in liver than (64)Cu-DOTA-F(19)-STh(2-19) (0.36 +/- 0.13 vs 1.21 +/- 0.65%ID/g) and significantly (p < 0.05) lower uptake in kidney than (64)Cu-TETA-F(19)-STh(2-19) (3.67 +/- 1.60 vs 11.36 +/- 2.85%ID/g). Use of the NOTA chelator for coordination of Cu-64 in the context of E. coli heat-stable enterotoxin analogues results in higher tumor/nontarget tissue ratios at 1 h pi than either DOTA or TETA macrocycles. Heat-stable enterotoxin-based radiopharmaceuticals such as these provide a means of noninvasively determining GC-C receptor status in colorectal cancers by PET.


Journal of Pharmacology and Experimental Therapeutics | 2014

Relationship between Cerebral Sigma-1 Receptor Occupancy and Attenuation of Cocaine’s Motor Stimulatory Effects in Mice by PD144418

John R. Lever; Dennis K. Miller; Emily A. Fergason-Cantrell; Caroline L. Green; Lisa D. Watkinson; Terry L. Carmack; Susan Z. Lever

Psychostimulant effects of cocaine are mediated partly by agonist actions at sigma-1 (σ1) receptors. Selective σ1 receptor antagonists attenuate these effects and provide a potential avenue for pharmacotherapy. However, the selective and high affinity σ1 antagonist PD144418 (1,2,3,6-tetrahydro-5-[3-(4-methylphenyl)-5-isoxazolyl]-1-propylpyridine) has been reported not to inhibit cocaine-induced hyperactivity. To address this apparent paradox, we evaluated aspects of PD144418 binding in vitro, investigated σ1 receptor and dopamine transporter (DAT) occupancy in vivo, and re-examined effects on locomotor activity. PD144418 displayed high affinity for σ1 sites (Ki 0.46 nM) and 3596-fold selectivity over σ2 sites (Ki 1654 nM) in guinea pig brain membranes. No appreciable affinity was noted for serotonin and norepinephrine transporters (Ki >100 μM), and the DAT interaction was weak (Ki 9.0 μM). In vivo, PD144418 bound to central and peripheral σ1 sites in mouse, with an ED50 of 0.22 μmol/kg in whole brain. No DAT occupancy by PD144418 (10.0 μmol/kg) or possible metabolites were observed. At doses that did not affect basal locomotor activity, PD144418 (1, 3.16, and 10 μmol/kg) attenuated cocaine-induced hyperactivity in a dose-dependent manner in mice. There was good correlation (r2 = 0.88) of hyperactivity reduction with increasing cerebral σ1 receptor occupancy. The behavioral ED50 of 0.79 μmol/kg corresponded to 80% occupancy. Significant σ1 receptor occupancy and the ability to mitigate cocaine’s motor stimulatory effects were observed for 16 hours after a single 10.0 μmol/kg dose of PD144418.


Bioconjugate Chemistry | 2009

Synthesis and characterization of an 111In-labeled peptide for the in vivo localization of human cancers expressing the urokinase-type plasminogen activator receptor (uPAR)

Dijie Liu; Douglas Overbey; Lisa D. Watkinson; Michael F. Giblin

This study describes the synthesis and preliminary biologic evaluation of an (111)In-labeled peptide antagonist of the urokinase-type plasminogen activator receptor (uPAR) as a potential probe for assessing metastatic potential of human breast cancer in vivo. The peptide (NAc-dD-CHA-F-dS-dR-Y-L-W-S-betaAla)(2)-K-K(DOTA)-NH(2) was synthesized and conjugated with the DOTA chelating moiety via conventional solid-phase peptide synthesis (SPPS), purified by reversed-phase HPLC, and characterized by MALDI-TOF MS and receptor binding assay. In vitro receptor binding studies demonstrated an IC(50) of 240 +/- 125 nM for the peptide, compared with IC(50) values of 0.44 +/- 0.02 and 0.75 +/- 0.01 nM for the amino terminal fragment (ATF) of the urokinase-type plasminogen activator (uPA) and full-length uPA, respectively. In vivo biodistribution studies were carried out using SCID mice bearing MDA-MB-231 human breast cancer xenografts. Biodistribution data was collected at 1, 4, and 24 h postinjection of (111)In-DOTA-peptide, and compared with data obtained using a scrambled control peptide as well as with data obtained using wild-type ATF radiolabeled with I-125. Biodistribution studies showed rapid elimination of the (111)-labeled peptide from the blood pool, with 0.12 +/- 0.06% ID/g remaining in blood at 4 h pi. Elimination was seen primarily via the renal/urinary route, with 83.9 +/- 2.2% ID in the urine at the same time point. Tumor uptake at this time was 0.53 +/- 0.11% ID/g, resulting in tumor/blood and tumor/muscle ratios of 4.2 and 9.4, respectively. Uptake in tumor was significantly higher than that obtained using a scrambled control peptide that showed no specific binding to uPAR (p < 0.05). In vitro and ex vivo results both suggested that the magnitude of tumor-specific binding was reduced in this model by endogenous expression of uPA. The results indicate that radiolabeled peptide uPAR antagonists may find application in the imaging and therapy of uPAR-expressing breast cancers in vivo.


Synapse | 2016

Cocaine occupancy of sigma1 receptors and dopamine transporters in mice

John R. Lever; Emily A. Fergason-Cantrell; Lisa D. Watkinson; Terry L. Carmack; Sarah A. Lord; Rong Xu; Dennis K. Miller; Susan Z. Lever

Activation of sigma1 (σ1) receptors contributes to the behavioral and toxic effects of (−)‐cocaine. We studied a key step, the ability of (−)‐cocaine to occupy σ1 receptors in vivo, using CD‐1® mice and the novel radioligand [125I]E‐N−1‐(3′‐iodoallyl)‐N′‐4‐(3″,4″‐dimethoxyphenethyl)‐piperazine ([125I]E‐IA‐DM‐PE‐PIPZE). (−)‐Cocaine displayed an ED50 of 68 μmol/kg for inhibition of specific radioligand binding in whole brain, with values between 73 and 80 μmol/kg for heart, lung, and spleen. For comparison, an ED50 of 26 μmol/kg for (−)‐cocaine occupancy of striatal dopamine transporters (DAT) was determined by inhibition of [125I]3β‐(4‐iodophenyl)tropan‐2β‐carboxylic acid isopropyl ester ([125I]RTI‐121) binding. A chief finding is the relatively small potency difference between (−)‐cocaine occupancy of σ1 receptors and the DAT, although the DAT occupancy is likely underestimated. Interactions of (−)‐cocaine with σ1 receptors were assessed further using [125I]E‐IA‐DM‐PE‐PIPZE for regional cerebral biodistribution studies and quantitative ex vivo autoradiography of brain sections. (−)‐Cocaine binding to cerebral σ1 receptors proved directly proportional to the relative site densities known for the brain regions. Nonradioactive E‐IA‐DM‐PE‐PIPZE gave an ED50 of 0.23 μmol/kg for occupancy of cerebral σ1 receptors, and a 3.16 μmol/kg (i.p.) dose attenuated (−)‐cocaine‐induced locomotor hyperactivity by 30%. This effect did not reach statistical significance, but suggests that E‐IA‐DM‐PE‐PIPZE is a probable σ1 receptor antagonist. As groundwork for the in vivo studies, we used standard techniques in vitro to determine ligand affinities, site densities, and pharmacological profiles for the σ1 and σ2 receptors expressed in CD‐1® mouse brain. Synapse 70:98–111, 2016.


Synapse | 2014

A selective sigma‐2 receptor ligand antagonizes cocaine‐induced hyperlocomotion in mice

John R. Lever; Dennis K. Miller; Caroline L. Green; Emily A. Fergason-Cantrell; Lisa D. Watkinson; Terry L. Carmack; Kuo Hsien Fan; Susan Z. Lever

Cocaine functions, in part, through agonist actions at sigma‐1 (σ1) receptors, while roles played by sigma‐2 (σ2) receptors are less established. Attempts to discriminate σ2 receptor‐mediated effects of cocaine in locomotor hyperactivity assays have been hampered by the lack of potent and selective antagonists. Certain tetrahydroisoquinolinyl benzamides display high σ2 receptor affinity, and excellent selectivity for binding to σ2 over σ1 receptors. The behavioral properties of this structural class of σ ligands have not yet been investigated. The present study evaluated 5‐bromo‐N‐[4‐(6,7‐dimethoxy‐3,4‐dihydro‐1H‐isoquinolin‐2‐yl)‐butyl)]‐2,3‐dimethoxy‐benzamide, 1, a ligand shown by others to bind preferentially to σ2 over σ1 receptors, as well as dopamine D2 and D3 sites. First, we determined binding to monoamine transporters and opioid receptors, and noted 57‐fold selectivity for σ2 receptors over the serotonin transporter, and >800‐fold selectivity for σ2 receptors over the other sites tested. We then examined 1 in locomotor activity studies using male CD‐1® mice, and saw no alteration of basal activity at doses up to 31.6 µmol/kg. Cocaine produced a fivefold increase in locomotor activity, which was attenuated by 66% upon pretreatment of mice with 1 at 31.6 µmol/kg. In vivo radioligand binding studies also were performed, and showed no occupancy of σ1 receptors or the dopamine transporter by 1, or its possible metabolites, at the 31.6 µmol/kg dose. Thus, ligand 1 profiles behaviorally as a σ2 receptor‐selective antagonist that is able to counteract cocaines motor stimulatory effects. Synapse 68:73–84, 2014.


Nuclear Medicine and Biology | 2017

Synthesis and evaluation of a 99m Tc tricarbonyl-labeled somatostatin receptor-targeting antagonist peptide for imaging of neuroendocrine tumors

Lauren Radford; Fabio Gallazzi; Lisa D. Watkinson; Terry L. Carmack; Ashley Berendzen; Michael R. Lewis; Silvia S. Jurisson; Dionysia Papagiannopoulou; Heather M. Hennkens

INTRODUCTION A somatostatin receptor (SSTR)-targeting antagonist peptide (sst2-ANT) was radiolabeled with 99mTc tricarbonyl via a tridentate [N,S,N]-type ligand (L) to develop a radiodiagnostic agent, 99mTcL-sst2-ANT, for imaging of SSTR-expressing neuroendocrine tumors. METHODS Receptor affinity was assessed in vitro with the nonradioactive analogue, ReL-sst2-ANT, via a challenge experiment in AR42J cells with 125I-SS-14 as the competing radioligand. Preparation of 99mTcL-sst2-ANT was achieved via reaction of [99mTc(CO)3(H2O)3]+ with L-sst2-ANT. To test the stability of the radiolabeled complex, challenge experiments were performed in phosphate-buffered saline solutions containing cysteine or histidine and also in mouse serum. Biodistribution and micro-SPECT/CT imaging studies were performed in AR42J tumor-bearing female ICR SCID mice. RESULTS The half maximal inhibitory concentration (IC50 value) of ReL-sst2-ANT in AR42J cells was 15nM. Preparation of 99mTcL-sst2-ANT was achieved with ≥97% radiochemical yield (RCY) and was verified by HPLC co-elution with the ReL-sst2-ANT analogue. The radiolabeled complex remained intact for up to 24h in high concentration solutions of cysteine and histidine at 37°C. Furthermore, the radiotracer was 90% stable for 1h at 37°C in mouse serum. Micro-SPECT/CT images showed clear uptake in tumors and were supported by the biodistribution data, in which the 3.2% ID/g tumor uptake at 4h was significantly blocked by co-administration of nonradioactive SS-14. CONCLUSIONS A [99mTc(CO)3(N,S,N)]+ chelate was employed for radiolabeling of an SSTR-targeting antagonist peptide. Synthesis of 99mTcL-sst2-ANT was achieved in high RCY, and the resulting complex displayed high in vitro stability. Somatostatin receptor affinity was retained in both cells and in tumor-bearing mice, where the complex successfully targeted SSTR-positive tumors via a receptor-mediated process. Advances in Knowledge and Implications for Patient Care. This first 99mTc-tricarbonyl-labeled SSTR antagonist peptide showed promising in vivo tumor targeting in mice. Future studies may lead to translation of a similar design into the clinic.


Medicinal Chemistry | 2012

Synthesis, Sigma Receptor Binding Studies, and In Vivo Evaluation of Radioiodinated (Z)- and (E)-iodoallyl Analogs of SA4503

Rong Xu; Lisa D. Watkinson; Terry L. Carmack; John R. Lever; Susan Z. Lever

SA4503, a potent σ1 receptor agonist, is under study for functional recovery after stroke, and has been tested for treatment of major depression. Recent behavioral studies indicate that SA4503 can also display antagonist properties, and attenuates psychostimulant-induced hyperactivity in animal models. Further, SA4503 labeled with carbon-11 (halflife 20.4 min), or analogs labeled with fluorine-18 (half-life 109.7 min), are useful for PET studies of the σ1 receptor. Analogs labeled with iodine-123 (13.2 h half-life) would have potential as SPECT imaging agents, while analogs labeled with iodine-125 (60.1 d half-life) could be used routinely in laboratory studies. Toward these ends, we describe the synthesis and radiolabeling, as well as in vitro and in vivo binding studies, of two SA4503 analogs where the 4-methoxy group of the dimethoxyphenethyl moiety is replaced by either a (Z)- or (E)-iodoallyloxy substituent. The iodoallyl groups were introduced by base-promoted coupling of stannylated alkylating agents to 4-O-des-methyl-SA4503, followed by iododestannylation with retention of configuration. Both (Z)- and (E)-iodoallyl-SA4503 displayed moderately high affinities for σ1 and σ2 receptors in vitro (Ki values 11-18 nM). The corresponding radioiodinated ligands were prepared in good yields (57-58%), with high purities (>97%) and high specific activities (>2000 mCi/μmol). Both radioligands readily crossed the blood-brain-barrier of mice, although their log D7.4 values of 3.6 were relatively high. Haloperidol pretreatment defined a modest degree of specific binding to σ1 receptors, but only for the [125I]-labeled (E)-isomer in mouse brain (28%) and liver (25%) at 60 min. Thus, these particular radioligands are not well suited to in vivo studies. More significantly, the work shows that σ receptors display substantial tolerance to bulky structural modifications of SA4503, a feature that might aid in the future development of possible therapeutics based on the SA4503 scaffold.


Anticancer Research | 2006

Selective Targeting of E. coli Heat-stable Enterotoxin Analogs to Human Colon Cancer Cells

Michael F. Giblin; Gary L. Sieckman; Lisa D. Watkinson; Said Daibes-Figueroa; Timothy J. Hoffman; Leonard R. Forte; Wynn A. Volkert

Collaboration


Dive into the Lisa D. Watkinson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John R. Lever

United States Department of Veterans Affairs

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Para Kan

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge