Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael F. Giblin is active.

Publication


Featured researches published by Michael F. Giblin.


Nuclear Medicine and Biology | 1999

In vivo evaluation of 99mTc/188Re-labeled linear alpha-melanocyte stimulating hormone analogs for specific melanoma targeting

JianQing Chen; Michael F. Giblin; Nannan Wang; Silvia S. Jurisson; Thomas P. Quinn

Radiolabeled alpha-melanocyte stimulating hormone (alpha-MSH) analogs were examined in melanoma-bearing mice to determine the effects of peptide length, structure, and radiometal chelation chemistry on tumor targeting and in vivo biodistribution. The linear alpha-MSH analogs [Nle4,D-Phe7]alpha-MSH (NDPMSH) and [D-Phe7]alpha-MSH(5-10) (DPMSH) were radiolabeled with 99mTc and 188Re via the addition of tetrafluorophenyl mercapto-acetylglycylglycyl-gamma-aminobutyrate (MAG2) or tetrapeptide Ac-Cys-Gly-Cys-Gly (CGCG) chelation moieties. 125I-Tyr2-NDPMSH was obtained by direct iodination of the Tyr2 residue. Tumor uptake of 99mTc-labeled CGCG- and MAG2-NDPMSH analogs at 30 min postinjection were 6.52 +/- 1.11 %ID/g and 4.17 +/- 1.34 %ID/g, respectively, resulting in a significantly higher tumor-to-blood uptake ratio than that of 125I-NDPMSH or a shorter alpha-MSH analog, 99mTc-CGCG-DPMSH. The combination of radiolabeling efficacy and in vivo tumor uptake highlights the potential of 99mTc-CGCG-NDPMSH as a melanoma imaging agent.


Gene | 1993

Isolation and characterization of nucleic acid-binding antibody fragments from autoimmune mice-derived bacteriophage display libraries.

Michael J. Calcutt; Marie T. Kremer; Michael F. Giblin; Thomas P. Quinn; Susan L. Deutscher

The display of antibody fragments (Fab) on the surface of filamentous bacteriophage and selection of phage that bind to a particular antigen has enabled the isolation of Fab with numerous specificities, including haptens, proteins and viral particles. We have examined the possibility of isolating nucleic acid-binding Fab by constructing a combinatorial library of phage displaying Fab derived from autoimmune (MRL/lpr) mice. Autoimmune mice were chosen because they contain antibodies (Ab) reactive against nuclear components, including DNA, RNA and protein complexes. The library was panned against single-stranded (ss) calf thymus (CT) DNA and the selected Fabs were analyzed further. Characterization of the nucleic acid-binding phage led to the identification of two kinds of Fab with quite different properties. One Fab bound with high affinity a variety of ssDNA molecules, as well as several model RNA substrates. This Fab has been affinity purified to greater than 95% and competition studies revealed a marked preference for binding to poly(dT). The second Fab showed a reduced binding to RNA ligands and a restricted number of ssDNA molecules. Analysis of the deduced amino acid (aa) sequences of the Fab variable (V) regions revealed that the heavy (H) chain V region from the strong nucleic acid-binding Fab was derived from a VH gene that is used recurrently in autoantibodies. This VH domain was most similar to an anti-ssDNA autoimmune monoclonal antibody (mAb) suggesting that antigen-binding specificities present in an autoimmune repertoire may be directly accessed by this approach.(ABSTRACT TRUNCATED AT 250 WORDS)


Bioconjugate Chemistry | 2010

Comparative Evaluation of Three 64Cu-Labeled E. coli Heat-Stable Enterotoxin Analogues for PET Imaging of Colorectal Cancer

Dijie Liu; Douglas Overbey; Lisa D. Watkinson; Charles J. Smith; Said Daibes-Figueroa; Timothy J. Hoffman; Leonard R. Forte; Wynn A. Volkert; Michael F. Giblin

Analogues of the E. coli heat-stable enterotoxin (STh) are currently under study as both imaging and therapeutic agents for colorectal cancer. Studies have shown that the guanylate cyclase C (GC-C) receptor is commonly expressed in colorectal cancers. It has also been shown that STh peptides inhibit the growth of tumor cells expressing GC-C. The ability to determine GC-C status of tumor tissue using in vivo molecular imaging techniques would provide a useful tool for the optimization of GC-C-targeted therapeutics. In this work, we have compared receptor binding affinities, internalization/efflux rates, and in vivo biodistribution patterns of an STh analogue linked to N-terminal DOTA, TETA, and NOTA chelating moieties and radiolabeled with Cu-64. The peptide F(19)-STh(2-19) was N-terminally labeled with three different chelating groups via NHS ester activation and characterized by RP-HPLC, ESI-MS, and GC-C receptor binding assays. The purified conjugates were radiolabeled with Cu-64 and used for in vitro internalization/efflux, in vivo biodistribution, and in vivo PET imaging studies. In vivo experiments were carried out using SCID mice bearing T84 human colorectal cancer tumor xenografts. Incorporation of DOTA-, TETA-, and NOTA-chelators at the N-terminus of the peptide F(19)-STh(2-19) resulted in IC(50)s between 1.2 and 3.2 nM. In vivo, tumor localization was similar for all three compounds, with 1.2-1.3%ID/g at 1 h pi and 0.58-0.83%ID/g at 4 h pi. The principal difference between the three compounds related to uptake in nontarget tissues, principally kidney and liver. At 1 h pi, (64)Cu-NOTA-F(19)-STh(2-19) demonstrated significantly (p < 0.05) lower uptake in liver than (64)Cu-DOTA-F(19)-STh(2-19) (0.36 +/- 0.13 vs 1.21 +/- 0.65%ID/g) and significantly (p < 0.05) lower uptake in kidney than (64)Cu-TETA-F(19)-STh(2-19) (3.67 +/- 1.60 vs 11.36 +/- 2.85%ID/g). Use of the NOTA chelator for coordination of Cu-64 in the context of E. coli heat-stable enterotoxin analogues results in higher tumor/nontarget tissue ratios at 1 h pi than either DOTA or TETA macrocycles. Heat-stable enterotoxin-based radiopharmaceuticals such as these provide a means of noninvasively determining GC-C receptor status in colorectal cancers by PET.


Bioconjugate Chemistry | 2009

Synthesis and characterization of an 111In-labeled peptide for the in vivo localization of human cancers expressing the urokinase-type plasminogen activator receptor (uPAR)

Dijie Liu; Douglas Overbey; Lisa D. Watkinson; Michael F. Giblin

This study describes the synthesis and preliminary biologic evaluation of an (111)In-labeled peptide antagonist of the urokinase-type plasminogen activator receptor (uPAR) as a potential probe for assessing metastatic potential of human breast cancer in vivo. The peptide (NAc-dD-CHA-F-dS-dR-Y-L-W-S-betaAla)(2)-K-K(DOTA)-NH(2) was synthesized and conjugated with the DOTA chelating moiety via conventional solid-phase peptide synthesis (SPPS), purified by reversed-phase HPLC, and characterized by MALDI-TOF MS and receptor binding assay. In vitro receptor binding studies demonstrated an IC(50) of 240 +/- 125 nM for the peptide, compared with IC(50) values of 0.44 +/- 0.02 and 0.75 +/- 0.01 nM for the amino terminal fragment (ATF) of the urokinase-type plasminogen activator (uPA) and full-length uPA, respectively. In vivo biodistribution studies were carried out using SCID mice bearing MDA-MB-231 human breast cancer xenografts. Biodistribution data was collected at 1, 4, and 24 h postinjection of (111)In-DOTA-peptide, and compared with data obtained using a scrambled control peptide as well as with data obtained using wild-type ATF radiolabeled with I-125. Biodistribution studies showed rapid elimination of the (111)-labeled peptide from the blood pool, with 0.12 +/- 0.06% ID/g remaining in blood at 4 h pi. Elimination was seen primarily via the renal/urinary route, with 83.9 +/- 2.2% ID in the urine at the same time point. Tumor uptake at this time was 0.53 +/- 0.11% ID/g, resulting in tumor/blood and tumor/muscle ratios of 4.2 and 9.4, respectively. Uptake in tumor was significantly higher than that obtained using a scrambled control peptide that showed no specific binding to uPAR (p < 0.05). In vitro and ex vivo results both suggested that the magnitude of tumor-specific binding was reduced in this model by endogenous expression of uPA. The results indicate that radiolabeled peptide uPAR antagonists may find application in the imaging and therapy of uPAR-expressing breast cancers in vivo.


Future Oncology | 2010

Radiometallated peptides targeting guanylate cyclase C and the urokinase-type plasminogen activator receptor

Snigdha Praharaj; Douglas Overbey; Michael F. Giblin

Research is currently underway worldwide into the development of receptor-specific radiopharmaceuticals for the imaging and treatment of cancer. The successful clinical development of radiolabeled somatostatin analogs for imaging and treatment of cancers overexpressing somatostatin receptors has catalyzed further preclinical investigation of other radiolabeled peptides for molecular imaging and peptide-receptor radiotherapy, including such well-studied peptide vectors as cholecystokinin, neurotensin, bombesin and RGD peptides. Within this larger context, this article will focus on the current status of two more recent additions to the list of molecular imaging targets - guanylate cyclase C, a specific marker for colorectal cancer, and the urokinase plasminogen activator receptor, a cell-surface receptor overexpressed in diverse cancer types.


Proceedings of the National Academy of Sciences of the United States of America | 1998

Design and characterization of alpha-melanotropin peptide analogs cyclized through rhenium and technetium metal coordination.

Michael F. Giblin; Nannan Wang; Timothy J. Hoffman; Silvia S. Jurisson; Thomas P. Quinn


Anticancer Research | 2006

Selective Targeting of E. coli Heat-stable Enterotoxin Analogs to Human Colon Cancer Cells

Michael F. Giblin; Gary L. Sieckman; Lisa D. Watkinson; Said Daibes-Figueroa; Timothy J. Hoffman; Leonard R. Forte; Wynn A. Volkert


Bioconjugate Chemistry | 1997

SYNTHESIS AND CHARACTERIZATION OF RHENIUM-COMPLEXED ALPHA -MELANOTROPIN ANALOGS

Michael F. Giblin; Silvia S. Jurisson; Thomas P. Quinn


in Vivo | 2005

Radiometallation of Receptor-specific Peptides for Diagnosis and Treatment of Human Cancer

Michael F. Giblin; Bhadrasetty Veerendra; Charles J. Smith


Anticancer Research | 2009

In Vivo Imaging of Human Colorectal Cancer Using Radiolabeled Analogs of the Uroguanylin Peptide Hormone

Dijie Liu; Douglas Overbey; Lisa D. Watkinson; Said Daibes-Figueroa; Timothy J. Hoffman; Leonard R. Forte; Wynn A. Volkert; Michael F. Giblin

Collaboration


Dive into the Michael F. Giblin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dijie Liu

United States Department of Veterans Affairs

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge