Lisa Haley
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lisa Haley.
Modern Pathology | 2015
Lisa Haley; Li Hui Tseng; Gang Zheng; Jonathan C. Dudley; Derek A. Anderson; Nilofer Saba Azad; Christopher D. Gocke; James R. Eshleman; Ming Tseh Lin
Activating mutations in downstream genes of the epidermal growth factor receptor (EGFR) pathway may cause anti-EGFR resistance in patients with colorectal cancers. We present performance characteristics of a next-generation sequencing assay designed to detect such mutations. In this retrospective quality assessment study, we analyzed mutation detected in the KRAS, NRAS, BRAF, and PIK3CA genes by a clinically validated next-generation sequencing assay in 310 colorectal cancer specimens. Tumor cellularity and mutant allele frequency were analyzed to identify tumor heterogeneity and mutant allele-specific imbalance. Next-generation sequencing showed precise measurement of mutant allele frequencies and detected 23% of mutations with 2–20% mutant allele frequencies. Of the KRAS mutations detected, 17% were outside of codons 12 and 13. Among PIK3CA mutations, 48% were outside of codons 542, 545, and 1047. The percentage of tumors with predicted resistance to anti-EGFR therapy increased from 40% when testing for only mutations in KRAS exon 2 to 47% when testing for KRAS exons 2–4, 48% when testing for KRAS and NRAS exons 2–4, 58% when including BRAF codon 600 mutations, and 59% when adding PIK3CA exon 20 mutations. Right-sided colorectal cancers carried a higher risk of predicted anti-EGFR resistance. A concomitant KRAS mutation was detected in 51% of PIK3CA, 23% of NRAS, and 33% of kinase-impaired BRAF-mutated tumors. Lower than expected mutant allele frequency indicated tumor heterogeneity, while higher than expected mutant allele frequency indicated mutant allele-specific imbalance. Two paired neuroendocrine carcinomas and adjacent adenomas showed identical KRAS mutations, but only PIK3CA mutations in neuroendocrine carcinomas. Next-generation sequencing is a robust tool for mutation detection in clinical laboratories. It demonstrates high analytic sensitivity and broad reportable range, and it provides simultaneous detection of concomitant mutations and a quantitative measurement of mutant allele frequencies to predict tumor heterogeneity and mutant allele-specific imbalance.
International Journal of Gynecological Pathology | 2013
Gloria H. Lewis; Cheryl DeScipio; Kathleen M. Murphy; Lisa Haley; Katie Beierl; Stacy Mosier; Sharon Tandy; Debra S. Cohen; Alice Lytwyn; Laurie Elit; Russell Vang; Brigitte M. Ronnett
Recent studies have demonstrated the value of ancillary techniques, including p57 immunohistochemistry and short tandem repeat genotyping, for distinguishing hydatidiform moles (HM) from nonmolar specimens and for subtyping HMs as complete hydatidiform moles (CHM) and partial hydatidiform moles (PHM). With rare exceptions, CHMs are p57-negative and androgenetic diploid; partial hydatidiform moles are p57-positive and diandric triploid; and nonmolar specimens are p57-positive and biparental diploid. Androgenetic/biparental mosaic/chimeric conceptions can have morphologic features that overlap with HMs but are genetically distinct. This study characterizes 11 androgenetic/biparental mosaic/chimeric conceptions identified in a series of 473 products of conception specimens subjected to p57 immunohistochemistry and short tandem repeat genotyping. Fluorescence in situ hybridization was performed on 10 to assess ploidy. All cases were characterized by hydropically enlarged, variably sized and shaped villi. In 5 cases, the villi lacked trophoblastic hyperplasia, whereas in 6 there was a focal to extensive villous component with trophoblastic hyperplasia and features of CHM. The villi lacking trophoblastic hyperplasia were characterized by discordant p57 expression within individual villi (p57-positive cytotrophoblast and p57-negative stromal cells), whereas the villous components having trophoblastic hyperplasia were uniformly p57-negative in both cell types. Short tandem repeat genotyping of at least 2 villous areas in each case demonstrated an excess of paternal alleles in all regions, with variable paternal:maternal allele ratios (usually >2:1); pure androgenetic diploidy was identified in those cases with a sufficiently sized villous component having trophoblastic hyperplasia and features of CHM. Fluorescence in situ hybridization demonstrated uniform diploidy in 7 cases, including 4 of 5 tested cases with trophoblastic hyperplasia and 3 of 5 cases without trophoblastic hyperplasia. Two cases without trophoblastic hyperplasia had uniformly diploid villous stromal cells but 1 had triploid and 1 had tetraploid cytotrophoblast; 1 case with trophoblastic hyperplasia had uniformly diploid villous stromal cells but a mixture of diploid, triploid, and tetraploid cytotrophoblast. In 3 cases with a CHM component, persistent gestational trophoblastic disease developed. These results indicate that androgenetic/biparental mosaic/chimeric conceptions are most often an admixture of androgenetic diploid (p57-negative) and biparental diploid (p57-positive) cell lines but some have localized hyperdiploid components. Recognition of their distinctive p57 expression patterns and genotyping results can prevent misclassification as typical CHMs, PHMs, or nonmolar specimens. The presence of androgenetic cell lines, particularly in those with a purely androgenetic CHM component, warrants follow-up because of some risk of persistent gestational trophoblastic disease.
Archives of Pathology & Laboratory Medicine | 2015
Jonathan C. Dudley; Li Hui Tseng; Lisa M. Rooper; Marco Harris; Lisa Haley; Guoli Chen; Christopher D. Gocke; James R. Eshleman; Ming Tseh Lin
CONTEXT Detection of KRAS mutation is mandatory to predict response to anti-epidermal growth factor receptor monoclonal antibodies in patients with metastatic colorectal cancers. OBJECTIVE To demonstrate challenges posed to pathologists in the clinical detection of KRAS mutations in colorectal cancers. DESIGN In this retrospective analysis for quality assessment of the pyrosequencing assay, we survey the characteristics of 463 formalin-fixed, paraffin-embedded neoplastic tissues submitted for KRAS mutation detection during a 26-month period. RESULTS The KRAS mutation was detected in 39.2% of tumors. This included 2 tumors with complex pyrograms (GGT>GAG at codon 12 and GGC>GTT at codon 13, as resolved by a Pyromaker software program) and 3 tumors with an indeterminate percentage of mutant alleles (defined as 4% to 5% and confirmed by a next-generation sequencing platform). Among the 25 specimens (5.5%) with fewer than 20% tumor cells, 22 were resected after chemotherapy/radiation. Significant depletion of tumor cells was observed in rectal cancers resected after neoadjuvant therapy (31.0%) versus those without previous treatment (0%) (P = .01). We also explore other specimens with low tumor cellularity and potential causes of discrepancy between the estimated tumor cell percentage and detected mutant allele frequency, such as intratumor heterogeneity of KRAS mutation. CONCLUSIONS Neoadjuvant therapy may deplete tumor cells and confound the molecular diagnosis of KRAS mutations. Accurate detection of specimens with poor tumor cellularity requires the appropriate selection of neoplastic tissues, evaluation of tumor cellularity, use of assays with high sensitivity, and prospective quality assessment.
The American Journal of Surgical Pathology | 2011
Cheryl DeScipio; Lisa Haley; Katie Beierl; Ashwini P. Pandit; Kathleen M. Murphy; Brigitte M. Ronnett
Distinction of hydatidiform moles (HM) from nonmolar specimens and their subclassification as complete (CHM) versus partial hydatidiform mole (PHM) are important for clinical practice and investigational studies to refine ascertainment of risk of persistent gestational trophoblastic disease (GTD), which differs among these entities. Immunohistochemical analysis of p57 expression, a paternally imprinted maternally expressed gene on 11p15.5, and molecular genotyping are useful for improving diagnosis. CHMs are characterized by androgenetic diploidy, with loss of p57 expression due to lack of maternal DNA. Loss of p57 expression distinguishes CHMs from both PHMs (diandric triploidy) and nonmolar specimens (biparental diploidy), which retain expression. We report a unique HM characterized by morphologic features suggesting an early CHM, including lack of p57 expression by immunohistochemistry, but with genetic features more in keeping with a PHM. Specifically, molecular genotyping by short tandem repeat markers provided evidence to support interpretation as a PHM by demonstrating allele patterns and ratios most consistent with diandric triploidy, with evidence of loss of the maternal copy of chromosome 11 to explain the lack of p57 expression. This case illustrates the value of combined traditional pathologic and ancillary molecular techniques for refined diagnosis of molar specimens. It also raises questions regarding which modalities should be used to ultimately define the subtypes of HMs and whether chromosomal losses or gains, particularly involving imprinted genes such as p57, might play a role in modifying risk of persistent GTD.
The Journal of Pathology | 2015
Yihong Wang; Ren-Chin Wu; Lauren Ende Shwartz; Lisa Haley; Ming Tse Lin; Ie Ming Shih; Robert J. Kurman
The derivation of ovarian intestinal‐type mucinous tumours is not well established. Some are derived from teratomas but the origin of the majority is not clear. It has been recently proposed that the non‐germ cell group may be derived from Brenner tumours, as the association of a mucinous tumour with a Brenner tumour is frequently observed. In order to explore the histogenesis of these neoplasms, we undertook a clonality analysis of the two components of ten combined Brenner and mucinous tumours using a human androgen receptor gene (HUMARA) assay. All eight informative cases of ten showed a concordant X‐chromosome inactivation pattern between the two tumour components, indicative of a shared clonal origin (p = 0.0039). Microsatellite genotyping in five of the combined tumours displayed an identical heterozygous pattern with paired Fallopian tube tissue, indicative of a somatic cell origin. In addition, paired box protein 8, a highly sensitive Müllerian epithelial marker, was not detected by immunohistochemistry in either tumour component in any of the ten tumours, suggesting that this subset of mucinous tumours does not originate from Müllerian‐derived epithelium. In conclusion, this study demonstrates that in combined mucinous and Brenner tumours, there is a shared clonal relationship between the two different tumour components and suggests that some pure mucinous tumours may develop from a Brenner tumour in which the Brenner tumour component becomes compressed and obliterated by an expanding mucinous neoplasm. Copyright
The Journal of Molecular Diagnostics | 2014
Marija Debeljak; Donald Freed; Jane Welch; Lisa Haley; Katie Beierl; Brian S. Iglehart; Aparna Pallavajjala; Christopher D. Gocke; Mary S. Leffell; Ming Tseh Lin; Jonathan Pevsner; Sarah J. Wheelan; James R. Eshleman
Human identity testing is critical to the fields of forensics, paternity, and hematopoietic stem cell transplantation. Most bone marrow (BM) engraftment testing currently uses microsatellites or short tandem repeats that are resolved by capillary electrophoresis. Single-nucleotide polymorphisms (SNPs) are theoretically a better choice among polymorphic DNA; however, ultrasensitive detection of SNPs using next-generation sequencing is currently not possible because of its inherently high error rate. We circumvent this problem by analyzing blocks of closely spaced SNPs, or haplotypes. As proof-of-principle, we chose the HLA-A locus because it is highly polymorphic and is already genotyped to select proper donors for BM transplant recipients. We aligned common HLA-A alleles and identified a region containing 18 closely spaced SNPs, flanked by nonpolymorphic DNA for primer placement. Analysis of cell line mixtures shows that the assay is accurate and precise, and has a lower limit of detection of approximately 0.01%. The BM from a series of hematopoietic stem cell transplantation patients who tested as all donor by short tandem repeat analysis demonstrated 0% to 1.5% patient DNA. Comprehensive analysis of the human genome using the 1000 Genomes database identified many additional loci that could be used for this purpose. This assay may prove useful to identify hematopoietic stem cell transplantation patients destined to relapse, microchimerism associated with solid organ transplantation, forensic applications, and possibly patient identification.
Brain Pathology | 2016
David Nauen; Lisa Haley; Ming Tseh Lin; Arie Perry; Caterina Giannini; Peter C. Burger; Fausto J. Rodriguez
Oligodendroglioma represents a distinctive neoplasm in adults but similar neoplasms occur rarely in children. We studied 20 cases of pediatric oligodendroglioma by SNP array (median age 9 years, range 1–19; 15 grade II and 5 grade III). Cytogenetic abnormalities were present in 8 (53%) grade II and all five anaplastic oligodendrogliomas. Most changes were in the form of deletion and copy neutral loss of heterozygosity (LOH). The most common abnormality was 1p deletion (n = 5). Whole arm 1p19q co‐deletion was present in three cases from adolescent patients and 9p loss in 3, including one low‐grade oligodendroglioma with CDKN2A homozygous deletion. Common losses were largely limited to the anaplastic subset (n = 5) and included 3q29 (n = 3), 11p (n = 3), 17q (n = 3), 4q (n = 2), 6p (n = 2), 13q (n = 2), 14q (n = 2), 17p (n = 2) and whole Ch 18 loss (n = 2). Gains were non‐recurrent except for whole Ch 7 (n = 2) and gain on 12q (n = 2) including the MDM2 locus. Possible germ line LOH (or uniparental disomy) was present in seven cases (35%), with one focal abnormality (22q13.1‐13.2) in two. BRAF‐KIAA1549 fusions and BRAF p.V600E mutations were absent (n = 13 and 8). In summary, cytogenetic alterations in pediatric oligodendrogliomas are characterized mostly by genomic losses, particularly in anaplastic tumors.
Oncotarget | 2016
Deborah Belchis; Li Hui Tseng; Thomas J. Gniadek; Lisa Haley; Parvez Lokhandwala; Peter B. Illei; Christopher D. Gocke; Patrick M. Forde; Julie R. Brahmer; Frederic B. Askin; James R. Eshleman; Ming Tseh Lin
EGFR-mutated lung adenocarcinomas routinely develop resistance to tyrosine kinase inhibitors (TKI). To better characterize the relative frequencies of the resistance mechanisms, we analyzed 48 EGFR-mutated TKI-resistant specimens from 41 patients. Next-generation sequencing of post-treatment specimens detected EGFR p.T790M in 31 (79%) of 39 patients, PIK3CA mutations in 10 (26%), EGFR p.S768_V769delinsIL in one, and KRAS p.G12C in one. Five PIK3CA mutations were outside of codons 542, 545, and 1047. Three of four pre-treatment specimens did not carry the PIK3CA mutation found in the post-treatment sample. Small cell carcinoma transformation was identified in four patients; none had p.T790M, including two where p.T790M was identified in the co-existing adenocarcinoma. In p.T790M-mutated specimens, the allele frequency was less than 5% in 24% of cases. p.T790M allele frequency was usually lower than that of the sensitizing mutation indicating that the resistance mutation was present either in a subset of cells or, if the sensitizing mutation was amplified, in a subset of the sensitizing alleles of a dominant clone. Eight patients had multiple resistance mutations, suggesting either multiple separate resistant clones or a single clone harboring multiple resistance mechanisms. PIK3CA mutations appear to be a more significant resistance mechanism than previously recognized.
Diagnostic Molecular Pathology | 2013
Katie Beierl; Li Hui Tseng; Russell Beierl; Lisa Haley; Christopher D. Gocke; James R. Eshleman; Ming Tseh Lin
Internal tandem duplication (ITD) mutations of the FLT3 gene have been associated with inferior prognosis of acute myeloid leukemia. Detection of minor clones or minimal residual clones with ITD mutations is desirable, but is challenging when the mutant signal determined by polymerase chain reaction (PCR) and capillary electrophoresis is weak. In this study, we applied delta-PCR, which is a triple-primer strategy, to ensure PCR specificity and improve the sensitivity to 0.1% leukemic cells with ITD mutation. We also applied a reference peak to calculate ITD allelic burdens of <2% threshold of technical limitation for evaluating the relative ratio of 2 signals by capillary electrophoresis. Delta-PCR was able to detect single or multiple ITD mutations with an allelic burden (peak height ratio of mutant allele and wild-type allele) ranging from 0.4% to >100% among all 31 cases with previous documented ITD mutations. In one of the 3 cases with previously reported negative ITD mutation in the initial diagnostic specimen and ITD-positive results in the follow-up specimens, an ITD of 0.04% allele burden was retrospectively detected in the initial diagnosis specimen using delta-PCR. We also demonstrated that minor ITD mutant clones with an allelic burden of <1% present at diagnosis may become a dominant clone at the later refractory status, suggesting that detection of leukemic clones with allelic burdens of <1% may be clinically significant. Delta-PCR can detect ITD mutations with improved sensitivity and specificity and may be useful for the detection of minimal residual leukemia.
Applied Immunohistochemistry & Molecular Morphology | 2014
Li Hui Tseng; Jih-Luh Tang; Lisa Haley; Katie Beierl; Christopher D. Gocke; James R. Eshleman; Ming Tseh Lin
Polymorphic short tandem-repeat, or microsatellite, loci have been widely used to analyze chimerism status after allogeneic hematopoietic stem-cell transplantation. In molecular diagnostic laboratories, it is recommended to calculate mixed chimerism for at least 2 informative loci and to avoid microsatellite loci on chromosomes with copy number changes. In this report, we show that microsatellite instability observed in 2 patients with acute leukemia may confound chimerism analysis. Interpretation errors may occur even if 2 to 3 loci are analyzed because of length variation in multiple microsatellite loci. Although microsatellite loci with length variation should not be selected for chimerism analysis, the presence of microsatellite instability, like copy number alteration because of aberrant chromosomes, provides evidence of recurrent or residual cancer cells after hematopoietic stem-cell transplantation.