Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa I. Jepeal is active.

Publication


Featured researches published by Lisa I. Jepeal.


PLOS ONE | 2013

Low Cost Extraction and Isothermal Amplification of DNA for Infectious Diarrhea Diagnosis

Shichu Huang; Jaephil Do; Andy Fan; Lei Zhao; Lisa I. Jepeal; Satish K. Singh; Catherine M. Klapperich

In order to counter the common perception that molecular diagnostics are too complicated to work in low resource settings, we have performed a difficult sample preparation and DNA amplification protocol using instrumentation designed to be operated without wall or battery power. In this work we have combined a nearly electricity-free nucleic acid extraction process with an electricity-free isothermal amplification assay to detect the presence of Clostridium difficile (C. difficile) DNA in the stool of infected patients. We used helicase-dependent isothermal amplification (HDA) to amplify the DNA in a low-cost, thermoplastic reaction chip heated with a pair of commercially available toe warmers, while using a simple Styrofoam insulator. DNA was extracted from known positive and negative stool samples. The DNA extraction protocol utilized an air pressure driven solid phase extraction device run using a standard bicycle pump. The simple heater setup required no electricity or battery and was capable of maintaining the temperature at 65°C±2°C for 55 min, suitable for repeatable HDA amplification. Experiments were performed to explore the adaptability of the system for use in a range of ambient conditions. When compared to a traditional centrifuge extraction protocol and a laboratory thermocycler, this disposable, no power platform achieved approximately the same lower limit of detection (1.25×10−2 pg of C. difficile DNA) while requiring much less raw material and a fraction of the lab infrastructure and cost. This proof of concept study could greatly impact the accessibility of molecular assays for applications in global health.


Regulatory Peptides | 2003

Cell-specific expression of the glucose-dependent insulinotropic polypeptide gene functions through a GATA and an ISL-1 motif in a mouse neuroendocrine tumor cell line

Lisa I. Jepeal; Michael O. Boylan; M. Michael Wolfe

BACKGROUND/AIMS Glucose-dependent insulinotropic polypeptide (GIP) is a 42-amino acid gastrointestinal regulatory peptide that, in the presence of glucose, stimulates insulin secretion from beta-cells. GIP is expressed in gastrointestinal K-cells. Prior analysis of the GIP promoter demonstrated that 193 bases of the promoter are required to direct cell specific expression. Here we sought to identify and characterize the transcription factors involved. RESULTS By mutational analysis of the GIP promoter in a neuroendocrine cell line (STC-1), we identified two regions located between bases -193 and -182 and bases -156 and -151 that, when independently altered, were responsible for a 90% and 85% reduction in transcription, respectively. When we compared these two regions with known motifs from transcription factor databases, we identified the cis elements as potential GATA and ISL-1 binding sites. With subsequent electrophoretic mobility shift analysis (EMSA) using STC-1 nuclear extracts, we demonstrated the ability of these regions to form specific DNA protein complexes. Furthermore, we utilized antisera to confirm the specific binding of GATA-4 to the upstream site and ISL-1 to the downstream element. CONCLUSION These findings provide evidence for the involvement of the transcription factors GATA-4 and ISL-1 in the cell-specific expression of the GIP gene.


Regulatory Peptides | 2004

Gastrin stimulates receptor-mediated proliferation of human esophageal adenocarcinoma cells

T. Carlton Moore; Lisa I. Jepeal; Michael O. Boylan; Satish K. Singh; Nick Boyd; David G. Beer; Albert J. Chang; M. Michael Wolfe

The prevalence of esophageal adenocarcinoma in the setting of Barretts metaplasia continues to increase in Western nations at a rate greater than any other cancer. The trophic properties of gastrin have been documented in gastric, pancreatic and colon cancer cell lines, suggesting a potential role for this regulatory peptide in the growth of these malignancies. The aims of these studies were to identify and characterize the presence of functional cholecystokinin type-2 (gastrin) receptors on the membranes of human esophageal adenocarcinoma cells. Reverse transcriptase-polymerase chain reaction (RT-PCR) demonstrated the presence of cholecystokinin type-2 receptor transcripts in human esophageal adenocarcinoma cell lines. Competitive binding assays revealed specific binding of gastrin in SEG-1 cells (IC50 of 2.4 x 10(-8) M). This finding was confirmed by laser scanning confocal microscopy through internalization of rhodamine green labeled gastrin heptapeptide in SEG-1 cells. Gastrin caused a dose-dependent increase in proliferation of SEG-1 cells when compared to controls. This effect was abolished by co-incubation with L365,260, a CCK-2-specific receptor antagonist. Gastrin-induced phosphorylation of the p44 and p42 mitogen-activated protein kinases was demonstrated by Western blot analysis. In conclusion, the studied human esophageal adenocarcinoma cell lines possess cholecystokinin type-2 (gastrin) receptors. Receptors bind gastrin, resulting in increased proliferation in SEG-1 cells.


Regulatory Peptides | 2010

Glucose-dependent insulinotropic polypeptide stimulates the proliferation of colorectal cancer cells

Daniel Prabakaran; Baogui Wang; Joseph D. Feuerstein; Jennifer A. Sinclair; Priti Bijpuria; Lisa I. Jepeal; M. Michael Wolfe

Although numerous epidemiological studies have provided convincing evidence for an increase in the prevalence of colorectal cancer (CRC) in obese individuals, the precise mechanisms involved have not been elucidated. Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal regulatory peptide whose primary physiologic role is to stimulate postprandial pancreatic insulin secretion. Like insulin, GIP has been linked to enhanced nutrient efficiency, which occurred during the course of evolution. Its expression is increased in obesity, and we thus initiated studies to examine whether GIP might contribute to the pathogenesis of obesity-related CRC. RT-PCR and Western analysis demonstrated the presence of the GIP receptor (GIPR) in several human CRC cell lines. GIP stimulated the proliferation of MC-26 cells, a mouse CRC cell line, in a concentration-dependent manner. Western analysis showed that GIP induced the activity of several downstream signaling molecules known to be involved in cellular proliferation in a concentration- and time-dependent manner. These studies indicate that the presence of GIP receptors in CRC may enable ligand binding and, in so doing, stimulate CRC cell proliferation. The overexpression of GIP, which occurs in obesity, might thereby be contributing to the enhanced rate of carcinogenesis observed in obesity.


Molecular and Cellular Endocrinology | 2008

GATA-4 upregulates glucose-dependent insulinotropic polypeptide expression in cells of pancreatic and intestinal lineage

Lisa I. Jepeal; Michael O. Boylan; M. Michael Wolfe

A thorough examination of glucose-dependent insulinotropic polypeptide (GIP) expression has been hampered by difficulty in isolating widely dispersed, GIP-producing enteroendocrine K-cells. To elucidate the molecular mechanisms governing the regulation of GIP expression, 14 intestinal and pancreatic cell lines were assessed for their suitability for studies examining GIP expression. Both STC-1 cells and the pancreatic cell line betaTC-3 were found to express GIP mRNA and secrete biologically active GIP. However, levels of GIP mRNA and bioactive peptide and the activity of transfected GIP reporter constructs were significantly lower in betaTC-3 than STC-1 cells. When betaTC-3 cells were analyzed for transcription factors known to be important for GIP expression, PDX-1 and ISL-1, but not GATA-4, were detected. Double staining for GIP-1 and GATA-4 in mouse duodenum demonstrated GATA-4 expression in intestinal K-cells. Exogenous expression of GATA-4 in betaTC-3 cells led to marked increases in both GIP transcription and secretion. Lastly suppression of GATA-4 via RNA interference, in GTC-1 cells, a subpopulation of STC-1 cells with high endogenous GIP expression resulted in a marked an attenuation of GIP promoter activity. Our data support the hypothesis that GATA-4 may function to augment or enhance GIP expression rather than act as an initiator of GIP transcription.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2009

Expression of glucose-dependent insulinotropic polypeptide in the zebrafish

Michelle C. Musson; Lisa I. Jepeal; Patrick D. Mabray; Irina V. Zhdanova; Wellington V. Cardoso; M. Michael Wolfe

In mammals, glucose-dependent insulinotropic polypeptide (GIP) is synthesized predominately in the small intestine and functions in conjunction with insulin to promote nutrient deposition. However, little is known regarding GIP expression and function in early vertebrates like the zebrafish, a model organism representing an early stage in the evolutionary development of the compound vertebrate pancreas. Analysis of GIP and insulin (insa) expression in zebrafish larvae by RT-PCR demonstrated that although insa was detected as early as 24 h postfertilization (hpf), GIP expression was not demonstrated until 72 hpf, shortly after the completion of endocrine pancreatic development but prior to the commencement of independent feeding. Furthermore, whole mount in situ hybridization of zebrafish larvae showed expression of GIP and insa in the same tissues, and in adult zebrafish, RT-PCR and immunohistochemistry demonstrated GIP expression in both the intestine and the pancreas. Receptor activation studies showed that zebrafish GIP was capable of activating the rat GIP receptor. Although previous studies have identified four receptors with glucagon receptor-like sequences in the zebrafish, one of which possesses the capacity to bind GIP, a functional analysis of these receptors has not been performed. This study demonstrates interactions between the latter receptor and zebrafish GIP, identifying it as a potential in vivo target for the ligand. Finally, food deprivation studies in larvae demonstrated an increase in GIP and proglucagon II mRNA levels in response to fasting. In conclusion, the results of these studies suggest that although the zebrafish appears to be a model of an early stage of evolutionary development of GIP expression, the peptide may not possess incretin properties in this species.


Regulatory Peptides | 2011

Evolutionary expression of glucose-dependent-insulinotropic polypeptide (GIP).

Michelle C. Musson; Lisa I. Jepeal; John R. Finnerty; M. Michael Wolfe

Glucose-dependent insulinotropic polypeptide (GIP) is a mammalian incretin hormone released into the circulation following nutrient ingestion. We examined the functional evolution of GIP and its relationship with insulin to delineate their respective roles in promoting nutrient efficiency. Expression patterns were examined in the sea lamprey (Petromyzon marinus), a basal vertebrate lacking a distinct pancreas, and in the zebrafish, Xenopus laevis, chicken, and mouse, organisms possessing extraintestinal pancreata. Although sea lamprey genomic analysis predicted a potential GIP-like gene, transcripts were not detected, and insulin expression was confined to the caudal pancreatic bud. GIP was detected in both the intestine and pancreas of the zebrafish and X. laevis. In contrast, GIP and insulin expression were limited to the intestine and pancreas, respectively, in chicken and mouse. Phylogenetic analysis of the glucagon-like ligands suggested proglucagon as the common ancestor, supporting the theory that GIP arose as a gene duplication of proglucagon. Insulin-secreting cells in the sea lamprey intestine may have obviated the need for an enteroinsular axis, and zebrafish may represent an evolutionary transition where GIP does not yet function as an incretin hormone. These observations are consistent with the hypothesis that GIP and insulin influence survival advantage by enhancing the efficiency of nutrient absorption and energy storage.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2013

Glucose-dependent insulinotropic polypeptide regulates dipeptide absorption in mouse jejunum

Steven Coon; John H. Schwartz; Vazhaikkurichi M. Rajendran; Lisa I. Jepeal; Satish K. Singh

Glucose-dependent insulinotropic polypeptide (GIP) secreted from jejunal mucosal K cells augments insulin secretion and plays a critical role in the pathogenesis of obesity and Type 2 diabetes mellitus. In recent studies, we have shown GIP directly activates Na-glucose cotransporter-1 (SGLT1) and enhances glucose absorption in mouse jejunum. It is not known whether GIP would also regulate other intestinal nutrient absorptive processes. The present study investigated the effect of GIP on proton-peptide cotransporter-1 (PepT1) that mediates di- and tripeptide absorption as well as peptidomimetic drugs. Immunohistochemistry studies localized both GIP receptor (GIPR) and PepT1 proteins on the basolateral and apical membranes of normal mouse jejunum, respectively. Anti-GIPR antibody detected 50-, 55-, 65-, and 70-kDa proteins, whereas anti-PepT1 detected a 70-kDa proteins in mucosal homogenates of mouse jejunum. RT-PCR analyses established the expression of GIPR- and PepT1-specific mRNA in mucosal cells of mouse jejunum. Absorption of Gly-Sar (a nondigestible dipeptide) measured under voltage-clamp conditions revealed that the imposed mucosal H(+) gradient-enhanced Gly-Sar absorption as an evidence for the presence of PepT1-mediated H(+):Gly-Sar cotransport on the apical membranes of mouse jejunum. H(+):Gly-Sar absorption was completely inhibited by cephalexin (a competitive inhibitor of PepT1) and was activated by GIP. The GIP-activated Gly-Sar absorption was completely inhibited by RP-cAMP (a cAMP antagonist). In contrast to GIP, the ileal L cell secreting glucagon-like peptide-1 (GLP-1) did not affect the H(+):Gly-Sar absorption in mouse jejunum. We conclude from these observations that GIP, but not GLP-1, directly activates PepT1 activity by a cAMP-dependent signaling pathway in jejunum.


Inflammatory Bowel Diseases | 2014

Elastic Scattering Spectroscopy as an Optical Marker of Inflammatory Bowel Disease Activity and Subtypes

Eladio Rodriguez-Diaz; Christopher D. Atkinson; Lisa I. Jepeal; Adam M. Berg; Christopher S. Huang; Sandra Cerda; Michael J. OʼBrien; Irving J. Bigio; Francis A. Farraye; Satish K. Singh

Background:In 10% to 15% of individuals, inflammatory bowel disease (IBD) is difficult to classify as ulcerative colitis (UC) or Crohns disease (CD). Previous work has demonstrated that probe-based elastic scattering spectroscopy (ESS) can produce spectra, informed by parameters like tissue ultrastructure and hemoglobin content, capable of differentiating pathologies. This study investigates whether ESS is an in vivo optical biomarker for the presence, activity, and type of IBD in the colon. Methods:Pilot study, a retrospective data analysis. ESS spectra of endoscopically normal and inflamed colon were obtained from 48 patients with IBD and 46 non-IBD controls. Measurements from patients with IBD were categorized as CD or UC based on clinical diagnosis. Spectra were analyzed using high-dimensional methods. Leave-one-patient-out cross-validation was used to obtain diagnostic performance estimates. Results:Patients with IBD were distinguishable from non-IBD controls with a sensitivity of 0.93 and specificity of 0.91 based on readings from endoscopically normal mucosa, and 0.94 and 0.93 from inflamed mucosa. In patients with IBD, histologically normal and inflamed colon were distinguishable with per-class accuracies of 0.83 and 0.89, respectively; histologically normal from inactive inflammation with accuracies of 0.73 and 0.89, respectively; and inactive from active colitis with accuracies of 0.87 and 0.84, respectively. The diagnosis of CD versus UC was made with per-class accuracies of 0.92 and 0.87 in normal and 0.87 and 0.85 in inflamed mucosa, respectively. Conclusions:ESS, a simple, low-cost clinically friendly optical biopsy modality, has the potential to enhance the endoscopic assessment of IBD and its activity in real time and may help to distinguish CD from UC.


Regulatory Peptides | 2010

Evolutionary conservation of glucose-dependent insulinotropic polypeptide (GIP) gene regulation and the enteroinsular axis.

Michelle C. Musson; Lisa I. Jepeal; Torfay Sharifnia; M. Michael Wolfe

Glucose-dependent insulinotropic polypeptide (GIP), an important component of the enteroinsular axis, is a potent stimulator of insulin secretion, functioning to maintain nutrient efficiency. Although well-characterized in mammals, little is known regarding GIP transcriptional regulation in Danio rerio (Dr). We previously demonstrated that DrGIP is expressed in the intestine and the pancreas, and we therefore cloned the Dr promoter to compare GIP transcriptional regulation in Dr and mammals. Although no significant homology was indentified between the highly conserved mammalian promoter and the DrGIP promoter, 1072-bp of the DrGIP promoter conferred tissue-specific expression in mammalian cell lines. Deletional analysis of the DrGIP promoter identified two regions that, when deleted, reduced transcription by 75% and 95%, respectively. Mutational analysis of the upstream region suggested involvement of an Nkx binding site, although we were unable to identify the factor binding to this site. The cis element in the downstream region was found to be a GATA binding site. Lastly, overexpression and shRNA experiments identified PAX4 as a potential repressor of DrGIP expression. These findings provide evidence that despite the identification of species-specific transcriptional regulators and differences in GIP expression patterns between D. rerio and mammals, a moderate degree of regulatory conservation appears to exist.

Collaboration


Dive into the Lisa I. Jepeal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satish K. Singh

Indian Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mart DeLaCruz

NorthShore University HealthSystem

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge