Lisa J. Vaillancourt
University of Kentucky
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lisa J. Vaillancourt.
Nature Genetics | 2012
Richard O'Connell; Michael R. Thon; Stéphane Hacquard; Stefan G. Amyotte; Jochen Kleemann; Maria F. Torres; Ulrike Damm; Ester Buiate; Lynn Epstein; Noam Alkan; Janine Altmüller; Lucia Alvarado-Balderrama; Christopher Bauser; Christian Becker; Bruce W. Birren; Zehua Chen; Jae Young Choi; Jo Anne Crouch; Jonathan P. Duvick; Mark A. Farman; Pamela Gan; David I. Heiman; Bernard Henrissat; Richard J. Howard; Mehdi Kabbage; Christian Koch; Barbara Kracher; Yasuyuki Kubo; Audrey D. Law; Marc-Henri Lebrun
Colletotrichum species are fungal pathogens that devastate crop plants worldwide. Host infection involves the differentiation of specialized cell types that are associated with penetration, growth inside living host cells (biotrophy) and tissue destruction (necrotrophy). We report here genome and transcriptome analyses of Colletotrichum higginsianum infecting Arabidopsis thaliana and Colletotrichum graminicola infecting maize. Comparative genomics showed that both fungi have large sets of pathogenicity-related genes, but families of genes encoding secreted effectors, pectin-degrading enzymes, secondary metabolism enzymes, transporters and peptidases are expanded in C. higginsianum. Genome-wide expression profiling revealed that these genes are transcribed in successive waves that are linked to pathogenic transitions: effectors and secondary metabolism enzymes are induced before penetration and during biotrophy, whereas most hydrolases and transporters are upregulated later, at the switch to necrotrophy. Our findings show that preinvasion perception of plant-derived signals substantially reprograms fungal gene expression and indicate previously unknown functions for particular fungal cell types.
Plant Physiology | 2008
Bidisha Chanda; Srivathsa C. Venugopal; Saurabh Kulshrestha; Duroy A. Navarre; Bruce Downie; Lisa J. Vaillancourt; Aardra Kachroo; Pradeep Kachroo
Glycerol-3-phosphate (G3P) is an important component of carbohydrate and lipid metabolic processes. In this article, we provide evidence that G3P levels in plants are associated with defense to a hemibiotrophic fungal pathogen Colletotrichum higginsianum. Inoculation of Arabidopsis (Arabidopsis thaliana) with C. higginsianum was correlated with an increase in G3P levels and a concomitant decrease in glycerol levels in the host. Plants impaired in utilization of plastidial G3P (act1) accumulated elevated levels of pathogen-induced G3P and displayed enhanced resistance. Furthermore, overexpression of the host GLY1 gene, which encodes a G3P dehydrogenase (G3Pdh), conferred enhanced resistance. In contrast, the gly1 mutant accumulated reduced levels of G3P after pathogen inoculation and showed enhanced susceptibility to C. higginsianum. Unlike gly1, a mutation in a cytosolic isoform of G3Pdh did not alter basal resistance to C. higginsianum. Furthermore, act1 gly1 double-mutant plants were as susceptible as the gly1 plants. Increased resistance or susceptibility of act1 and gly1 plants to C. higginsianum, respectively, was not due to effects of these mutations on salicylic acid- or ethylene-mediated defense pathways. The act1 mutation restored a wild-type-like response in camalexin-deficient pad3 plants, which were hypersusceptible to C. higginsianum. These data suggest that G3P-associated resistance to C. higginsianum occurs independently or downstream of the camalexin pathway. Together, these results suggest a novel and specific link between G3P metabolism and plant defense.
Current Genetics | 2005
Jennifer L. Flowers; Lisa J. Vaillancourt
We have developed an Agrobacteriumtumefaciens-mediated transformation (ATMT) protocol for the plant pathogenic fungus Colletotrichum graminicola, the cause of anthracnose leaf blight and stalk rot of corn. The ATMT results in higher transformation efficiencies than previously available polyethylene glycol-mediated protocols, and falcate spores can be used instead of protoplasts for transformation. Various experimental parameters were tested for their effects on transformation efficiencies. The parameters with the greatest influence were the A. tumefaciens strain used and the Ti-plasmid it carried, the ratio of bacterium to fungus during cocultivation, and the length of cocultivation. Southern analysis demonstrated that most transformants (80%) contained tandem integrations of plasmid sequences, and at least 36% had integrations at multiple sites in the genome. In a majority of cases (70%), the whole Ti-plasmid, and not just the T-DNA, had integrated as a series of tandem repeats. Tandem integrations, especially of the whole plasmid, make it difficult to rescue DNA from both flanks of the integrations with standard PCR-based approaches. Thus, ATMT may be unsuitable for insertional mutagenesis of C. graminicola without further modification.
Mycologia | 2000
Lisa J. Vaillancourt; Meizhu Du; Juan Wang; Jeffrey A. Rollins; Robert M. Hanau
The ascomycete Glomerella cingulata has an unusual and complex mating system which is con- trolled by multiple, multiallelic loci. Cross fertility be- tween different isolates occurs via complementation of mutated fertility genes, a process known as unbal- anced heterothallism. We have examined the herita-
Plant Signaling & Behavior | 2009
Srivathsa C. Venugopal; Bidisha Chanda; Lisa J. Vaillancourt; Aardra Kachroo; Pradeep Kachroo
Conversion of glycerol to glycerol-3-phosphate (G3P) is one of the highly conserved steps of glycerol metabolism in evolutionary diverse organisms. In plants, G3P is produced either via the glycerol kinase (GK)-mediated phosphorylation of glycerol, or via G3P dehydrogenase (G3Pdh)-mediated reduction of dihydroxyacetone phosphate (DHAP). We have recently shown that G3P levels contribute to basal resistance against the hemibiotrophic pathogen, Colletotrichum higginsianum. Since a mutation in the GLY1-encoded G3Pdh conferred more susceptibility compared to a mutation in the GLI1-encoded GK, we proposed that GLY1 is the major contributor of the total G3P pool that participates in defense against C. higginsianum.
Archive | 2014
Jo Anne Crouch; Richard O’Connell; Pamela Gan; Ester Buiate; Maria F. Torres; Lisa A. Beirn; Ken Shirasu; Lisa J. Vaillancourt
Members of the genus Colletotrichum cause anthracnose diseases on nearly every crop grown for food, fiber, and forage worldwide. Colletotrichum fungi display a broad range of lifestyles, including plant associations occupying a continuum from necrotrophy to intracellular hemibiotrophy (IH) to endophytism. There are at least three major variants of IH, differing in the duration of biotrophy and synchronization of the switch to necrotrophy. Comparative genomic analyses may uncover how these lifestyles evolved and their functional relationships, identify commonalities as potential conserved targets for control and management, and transform our current understanding of Colletotrichum taxonomy. The genome sequences of four species were recently published: C. graminicola; C. higginsianum; C. obiculare; and C. fructicola (reported as C. gloeosporioides). These species occupy distinct monophyletic lineages in the genus and represent three different lifestyles (two variants of IH, and necrotrophy). The Colletotrichum genomes are relatively large (58-88 Mb), and encode between 11,000 and 16,000 genes. They share little synteny, suggesting that large-scale genome rearrangements were common during the evolutionary history of the genus. Several gene families are expanded in Colletotrichum relative to other sequenced ascomycetes, including those encoding carbohydrate-active enzymes, secondary metabolism enzymes, secreted proteases, and putative secreted effectors. Analysis of the in planta transcriptomes of C. higginsianum, C. graminicola, and C. orbiculare suggested that appressoria and biotrophic intracellular hyphae function as platforms for the secretion of effectors and secondary metabolites to establish host compatibility, while hyphae developing after the switch to necrotrophy are primarily involved in secreting cell wall degrading enzymes and nutrient uptake.
PLOS ONE | 2014
Quélen L. Barcelos; Joyce M. A. Pinto; Lisa J. Vaillancourt; Elaine Aparecida de Souza
Anthracnose caused by Colletotrichum lindemuthianum is an important disease of common bean, resulting in major economic losses worldwide. Genetic diversity of the C. lindemuthianum population contributes to its ability to adapt rapidly to new sources of host resistance. The origin of this diversity is unknown, but sexual recombination, via the Glomerella teleomorph, is one possibility. This study tested the hypothesis that Glomerella strains that are frequently recovered from bean anthracnose lesions represent the teleomorph of C. lindemuthianum. A large collection of Glomerella isolates could be separated into two groups based on phylogenetic analysis, morphology, and pathogenicity to beans. Both groups were unrelated to C. lindemuthianum. One group clustered with the C. gloeosporioides species complex and produced mild symptoms on bean tissues. The other group, which belonged to a clade that included the cucurbit anthracnose pathogen C. magna, caused no symptoms. Individual ascospores recovered from Glomerella perithecia gave rise to either fertile (perithecial) or infertile (conidial) colonies. Some pairings of perithecial and conidial strains resulted in induced homothallism in the conidial partner, while others led to apparent heterothallic matings. Pairings involving two perithecial, or two conidial, colonies produced neither outcome. Conidia efficiently formed conidial anastomosis tubes (CATs), but ascospores never formed CATs. The Glomerella strains formed appressoria and hyphae on the plant surface, but did not penetrate or form infection structures within the tissues. Their behavior was similar whether the beans were susceptible or resistant to anthracnose. These same Glomerella strains produced thick intracellular hyphae, and eventually acervuli, if host cell death was induced. When Glomerella was co-inoculated with C. lindemuthianum, it readily invaded anthracnose lesions. Thus, the hypothesis was not supported: Glomerella strains from anthracnose lesions do not represent the teleomorphic phase of C. lindemuthianum, and instead appear to be bean epiphytes that opportunistically invade and sporulate in the lesions.
BMC Genomics | 2016
Maria F. Torres; Noushin Ghaffari; Ester Buiate; Neil Moore; Scott Schwartz; Charles D. Johnson; Lisa J. Vaillancourt
BackgroundColletotrichum graminicola is a hemibiotrophic fungal pathogen that causes maize anthracnose disease. It progresses through three recognizable phases of pathogenic development in planta: melanized appressoria on the host surface prior to penetration; biotrophy, characterized by intracellular colonization of living host cells; and necrotrophy, characterized by host cell death and symptom development. A “Mixed Effects” Generalized Linear Model (GLM) was developed and applied to an existing Illumina transcriptome dataset, substantially increasing the statistical power of the analysis of C. graminicola gene expression during infection and colonization. Additionally, the in planta transcriptome of the wild-type was compared with that of a mutant strain impaired in the establishment of biotrophy, allowing detailed dissection of events occurring specifically during penetration, and during early versus late biotrophy.ResultsMore than 2000 fungal genes were differentially transcribed during appressorial maturation, penetration, and colonization. Secreted proteins, secondary metabolism genes, and membrane receptors were over-represented among the differentially expressed genes, suggesting that the fungus engages in an intimate and dynamic conversation with the host, beginning prior to penetration. This communication process probably involves reception of plant signals triggering subsequent developmental progress in the fungus, as well as production of signals that induce responses in the host. Later phases of biotrophy were more similar to necrotrophy, with increased production of secreted proteases, inducers of plant cell death, hydrolases, and membrane bound transporters for the uptake and egress of potential toxins, signals, and nutrients.ConclusionsThis approach revealed, in unprecedented detail, fungal genes specifically expressed during critical phases of host penetration and biotrophic establishment. Many encoded secreted proteins, secondary metabolism enzymes, and receptors that may play roles in host-pathogen communication necessary to promote susceptibility, and thus may provide targets for chemical or biological controls to manage this important disease. The differentially expressed genes could be used as ‘landmarks’ to more accurately identify developmental progress in compatible versus incompatible interactions involving genetic variants of both host and pathogen.
BMC Genomics | 2017
Ester Buiate; Katia Viana Xavier; Neil Moore; Maria F. Torres; Mark L. Farman; Christopher L. Schardl; Lisa J. Vaillancourt
BackgroundColletotrichum graminicola and C. sublineola cause anthracnose leaf and stalk diseases of maize and sorghum, respectively. In spite of their close evolutionary relationship, the two species are completely host-specific. Host specificity is often attributed to pathogen virulence factors, including specialized secondary metabolites (SSM), and small-secreted protein (SSP) effectors. Genes relevant to these categories were manually annotated in two co-occurring, contemporaneous strains of C. graminicola and C. sublineola. A comparative genomic and phylogenetic analysis was performed to address the evolutionary relationships among these and other divergent gene families in the two strains.ResultsInoculation of maize with C. sublineola, or of sorghum with C. graminicola, resulted in rapid plant cell death at, or just after, the point of penetration. The two fungal genomes were very similar. More than 50% of the assemblies could be directly aligned, and more than 80% of the gene models were syntenous. More than 90% of the predicted proteins had orthologs in both species. Genes lacking orthologs in the other species (non-conserved genes) included many predicted to encode SSM-associated proteins and SSPs. Other common groups of non-conserved proteins included transporters, transcription factors, and CAZymes. Only 32 SSP genes appeared to be specific to C. graminicola, and 21 to C. sublineola. None of the SSM-associated genes were lineage-specific. Two different strains of C. graminicola, and three strains of C. sublineola, differed in no more than 1% percent of gene sequences from one another.ConclusionsEfficient non-host recognition of C. sublineola by maize, and of C. graminicola by sorghum, was observed in epidermal cells as a rapid deployment of visible resistance responses and plant cell death. Numerous non-conserved SSP and SSM-associated predicted proteins that could play a role in this non-host recognition were identified. Additional categories of genes that were also highly divergent suggested an important role for co-evolutionary adaptation to specific host environmental factors, in addition to aspects of initial recognition, in host specificity. This work provides a foundation for future functional studies aimed at clarifying the roles of these proteins, and the possibility of manipulating them to improve management of these two economically important diseases.
Fungal Genetics and Biology | 2008
C. Venard; S. Kulshrestha; James A. Sweigard; E. Nuckles; Lisa J. Vaillancourt
A transposon-based split-marker protocol was used to produce insertional mutations in the fadA ortholog of the maize anthracnose pathogen Colletotrichum graminicola. The mutants grew more slowly in culture, produced fewer oval spores, produced fusiform rather than falcate phialospores, lost their normal clockwise spiral growth pattern in culture, and were significantly reduced in their pathogenicity to maize stalks and leaves. The differential effect of the fadA mutation on oval spore versus phialospore production suggests that there are differences in the signaling pathways that regulate these two types of sporulation. It has been suggested that oval spores function in anthracnose lesion extension. In maize stalks, production of oval spores appeared to be relatively unaffected in the mutant strains, but production of vegetative hyphae and elongation of primary lesions were both reduced. This suggests that vegetative hyphae play a more important role than oval spores in primary lesion development. However, production of discontinuous secondary lesions in maize stalks infected by mutant strains did not appear to be seriously affected, and thus oval spores may play a more important role in that process.