Maria F. Torres
Cornell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria F. Torres.
Nature Genetics | 2012
Richard O'Connell; Michael R. Thon; Stéphane Hacquard; Stefan G. Amyotte; Jochen Kleemann; Maria F. Torres; Ulrike Damm; Ester Buiate; Lynn Epstein; Noam Alkan; Janine Altmüller; Lucia Alvarado-Balderrama; Christopher Bauser; Christian Becker; Bruce W. Birren; Zehua Chen; Jae Young Choi; Jo Anne Crouch; Jonathan P. Duvick; Mark A. Farman; Pamela Gan; David I. Heiman; Bernard Henrissat; Richard J. Howard; Mehdi Kabbage; Christian Koch; Barbara Kracher; Yasuyuki Kubo; Audrey D. Law; Marc-Henri Lebrun
Colletotrichum species are fungal pathogens that devastate crop plants worldwide. Host infection involves the differentiation of specialized cell types that are associated with penetration, growth inside living host cells (biotrophy) and tissue destruction (necrotrophy). We report here genome and transcriptome analyses of Colletotrichum higginsianum infecting Arabidopsis thaliana and Colletotrichum graminicola infecting maize. Comparative genomics showed that both fungi have large sets of pathogenicity-related genes, but families of genes encoding secreted effectors, pectin-degrading enzymes, secondary metabolism enzymes, transporters and peptidases are expanded in C. higginsianum. Genome-wide expression profiling revealed that these genes are transcribed in successive waves that are linked to pathogenic transitions: effectors and secondary metabolism enzymes are induced before penetration and during biotrophy, whereas most hydrolases and transporters are upregulated later, at the switch to necrotrophy. Our findings show that preinvasion perception of plant-derived signals substantially reprograms fungal gene expression and indicate previously unknown functions for particular fungal cell types.
Archive | 2014
Jo Anne Crouch; Richard O’Connell; Pamela Gan; Ester Buiate; Maria F. Torres; Lisa A. Beirn; Ken Shirasu; Lisa J. Vaillancourt
Members of the genus Colletotrichum cause anthracnose diseases on nearly every crop grown for food, fiber, and forage worldwide. Colletotrichum fungi display a broad range of lifestyles, including plant associations occupying a continuum from necrotrophy to intracellular hemibiotrophy (IH) to endophytism. There are at least three major variants of IH, differing in the duration of biotrophy and synchronization of the switch to necrotrophy. Comparative genomic analyses may uncover how these lifestyles evolved and their functional relationships, identify commonalities as potential conserved targets for control and management, and transform our current understanding of Colletotrichum taxonomy. The genome sequences of four species were recently published: C. graminicola; C. higginsianum; C. obiculare; and C. fructicola (reported as C. gloeosporioides). These species occupy distinct monophyletic lineages in the genus and represent three different lifestyles (two variants of IH, and necrotrophy). The Colletotrichum genomes are relatively large (58-88 Mb), and encode between 11,000 and 16,000 genes. They share little synteny, suggesting that large-scale genome rearrangements were common during the evolutionary history of the genus. Several gene families are expanded in Colletotrichum relative to other sequenced ascomycetes, including those encoding carbohydrate-active enzymes, secondary metabolism enzymes, secreted proteases, and putative secreted effectors. Analysis of the in planta transcriptomes of C. higginsianum, C. graminicola, and C. orbiculare suggested that appressoria and biotrophic intracellular hyphae function as platforms for the secretion of effectors and secondary metabolites to establish host compatibility, while hyphae developing after the switch to necrotrophy are primarily involved in secreting cell wall degrading enzymes and nutrient uptake.
G3: Genes, Genomes, Genetics | 2015
Lisa Sara Mathew; Michael Seidel; Binu George; Sweety Mathew; Manuel Spannagl; Georg Haberer; Maria F. Torres; Eman Al-Dous; Eman K. Al-Azwani; Ilhem Diboun; Robert R. Krueger; Klaus F. X. Mayer; Yasmin Mohamoud; Karsten Suhre; Joel A. Malek
The date palm (Phoenix dactylifera L.) is one of the oldest cultivated trees and is intimately tied to the history of human civilization. There are hundreds of commercial cultivars with distinct fruit shapes, colors, and sizes growing mainly in arid lands from the west of North Africa to India. The origin of date palm domestication is still uncertain, and few studies have attempted to document genetic diversity across multiple regions. We conducted genotyping-by-sequencing on 70 female cultivar samples from across the date palm–growing regions, including four Phoenix species as the outgroup. Here, for the first time, we generate genome-wide genotyping data for 13,000–65,000 SNPs in a diverse set of date palm fruit and leaf samples. Our analysis provides the first genome-wide evidence confirming recent findings that the date palm cultivars segregate into two main regions of shared genetic background from North Africa and the Arabian Gulf. We identify genomic regions with high densities of geographically segregating SNPs and also observe higher levels of allele fixation on the recently described X-chromosome than on the autosomes. Our results fit a model with two centers of earliest cultivation including date palms autochthonous to North Africa. These results adjust our understanding of human agriculture history and will provide the foundation for more directed functional studies and a better understanding of genetic diversity in date palm.
BMC Genomics | 2016
Maria F. Torres; Noushin Ghaffari; Ester Buiate; Neil Moore; Scott Schwartz; Charles D. Johnson; Lisa J. Vaillancourt
BackgroundColletotrichum graminicola is a hemibiotrophic fungal pathogen that causes maize anthracnose disease. It progresses through three recognizable phases of pathogenic development in planta: melanized appressoria on the host surface prior to penetration; biotrophy, characterized by intracellular colonization of living host cells; and necrotrophy, characterized by host cell death and symptom development. A “Mixed Effects” Generalized Linear Model (GLM) was developed and applied to an existing Illumina transcriptome dataset, substantially increasing the statistical power of the analysis of C. graminicola gene expression during infection and colonization. Additionally, the in planta transcriptome of the wild-type was compared with that of a mutant strain impaired in the establishment of biotrophy, allowing detailed dissection of events occurring specifically during penetration, and during early versus late biotrophy.ResultsMore than 2000 fungal genes were differentially transcribed during appressorial maturation, penetration, and colonization. Secreted proteins, secondary metabolism genes, and membrane receptors were over-represented among the differentially expressed genes, suggesting that the fungus engages in an intimate and dynamic conversation with the host, beginning prior to penetration. This communication process probably involves reception of plant signals triggering subsequent developmental progress in the fungus, as well as production of signals that induce responses in the host. Later phases of biotrophy were more similar to necrotrophy, with increased production of secreted proteases, inducers of plant cell death, hydrolases, and membrane bound transporters for the uptake and egress of potential toxins, signals, and nutrients.ConclusionsThis approach revealed, in unprecedented detail, fungal genes specifically expressed during critical phases of host penetration and biotrophic establishment. Many encoded secreted proteins, secondary metabolism enzymes, and receptors that may play roles in host-pathogen communication necessary to promote susceptibility, and thus may provide targets for chemical or biological controls to manage this important disease. The differentially expressed genes could be used as ‘landmarks’ to more accurately identify developmental progress in compatible versus incompatible interactions involving genetic variants of both host and pathogen.
BMC Plant Biology | 2015
Ilhame Diboun; Sweety Mathew; Maryam Al-Rayyashi; Mohamed A. Elrayess; Maria F. Torres; Anna Halama; Michaël Méret; Robert P. Mohney; Edward D. Karoly; Joel A. Malek; Karsten Suhre
BackgroundDates are tropical fruits with appreciable nutritional value. Previous attempts at global metabolic characterization of the date metabolome were constrained by small sample size and limited geographical sampling. In this study, two independent large cohorts of mature dates exhibiting substantial diversity in origin, varieties and fruit processing conditions were measured by metabolomics techniques in order to identify major determinants of the fruit metabolome.ResultsMultivariate analysis revealed a first principal component (PC1) significantly associated with the dates’ countries of production. The availability of a smaller dataset featuring immature dates from different development stages served to build a model of the ripening process in dates, which helped reveal a strong ripening signature in PC1. Analysis revealed enrichment in the dry type of dates amongst fruits with early ripening profiles at one end of PC1 as oppose to an overrepresentation of the soft type of dates with late ripening profiles at the other end of PC1. Dry dates are typical to the North African region whilst soft dates are more popular in the Gulf region, which partly explains the observed association between PC1 and geography. Analysis of the loading values, expressing metabolite correlation levels with PC1, revealed enrichment patterns of a comprehensive range of metabolite classes along PC1. Three distinct metabolic phases corresponding to known stages of date ripening were observed: An early phase enriched in regulatory hormones, amines and polyamines, energy production, tannins, sucrose and anti-oxidant activity, a second phase with on-going phenylpropanoid secondary metabolism, gene expression and phospholipid metabolism and a late phase with marked sugar dehydration activity and degradation reactions leading to increased volatile synthesis.ConclusionsThese data indicate the importance of date ripening as a main driver of variation in the date metabolome responsible for their diverse nutritional and economical values. The biochemistry of the ripening process in dates is consistent with other fruits but natural dryness may prevent degenerative senescence in dates following ripening. Based on the finding that mature dates present varying extents of ripening, our survey of the date metabolome essentially revealed snapshots of interchanging metabolic states during ripening empowering an in-depth characterization of underlying biology.
BMC Genomics | 2017
Ester Buiate; Katia Viana Xavier; Neil Moore; Maria F. Torres; Mark L. Farman; Christopher L. Schardl; Lisa J. Vaillancourt
BackgroundColletotrichum graminicola and C. sublineola cause anthracnose leaf and stalk diseases of maize and sorghum, respectively. In spite of their close evolutionary relationship, the two species are completely host-specific. Host specificity is often attributed to pathogen virulence factors, including specialized secondary metabolites (SSM), and small-secreted protein (SSP) effectors. Genes relevant to these categories were manually annotated in two co-occurring, contemporaneous strains of C. graminicola and C. sublineola. A comparative genomic and phylogenetic analysis was performed to address the evolutionary relationships among these and other divergent gene families in the two strains.ResultsInoculation of maize with C. sublineola, or of sorghum with C. graminicola, resulted in rapid plant cell death at, or just after, the point of penetration. The two fungal genomes were very similar. More than 50% of the assemblies could be directly aligned, and more than 80% of the gene models were syntenous. More than 90% of the predicted proteins had orthologs in both species. Genes lacking orthologs in the other species (non-conserved genes) included many predicted to encode SSM-associated proteins and SSPs. Other common groups of non-conserved proteins included transporters, transcription factors, and CAZymes. Only 32 SSP genes appeared to be specific to C. graminicola, and 21 to C. sublineola. None of the SSM-associated genes were lineage-specific. Two different strains of C. graminicola, and three strains of C. sublineola, differed in no more than 1% percent of gene sequences from one another.ConclusionsEfficient non-host recognition of C. sublineola by maize, and of C. graminicola by sorghum, was observed in epidermal cells as a rapid deployment of visible resistance responses and plant cell death. Numerous non-conserved SSP and SSM-associated predicted proteins that could play a role in this non-host recognition were identified. Additional categories of genes that were also highly divergent suggested an important role for co-evolutionary adaptation to specific host environmental factors, in addition to aspects of initial recognition, in host specificity. This work provides a foundation for future functional studies aimed at clarifying the roles of these proteins, and the possibility of manipulating them to improve management of these two economically important diseases.
Molecular Plant Pathology | 2014
Maria F. Torres; Diego F. Cuadros; Lisa J. Vaillancourt
Colletotrichum graminicola, the causal agent of maize anthracnose, is a hemibiotrophic fungus that initially infects living host cells via primary hyphae surrounded by a membrane. A nonpathogenic mutant disrupted in a gene encoding a component of the signal peptidase complex, and believed to be deficient in protein processing and secretion, regained pathogenicity when it was inoculated onto maize leaf sheaths close to the wild-type fungus. Evidence is presented suggesting that the wild-type produces a diffusible factor(s) that induces the localized susceptibility of host cells at the borders of expanding colonies, causing them to become receptive to biotrophic invasion. The induced susceptibility effect is limited to a distance of approximately eight cells from the edge of the wild-type colony, is dosage dependent and is specific to C. graminicola.
Nature Communications | 2018
Maria F. Torres; Lisa Sara Mathew; Ikhlak Ahmed; Iman K. Al-Azwani; Robert R. Krueger; Diego Rivera-Nuñez; Yasmin Mohamoud; Andrew G. Clark; Karsten Suhre; Joel A. Malek
The date palm tree is a commercially important member of the genus Phoenix whose 14 species are dioecious with separate male and female individuals. To identify sex determining genes we sequenced the genomes of 15 female and 13 male Phoenix trees representing all 14 species. We identified male-specific sequences and extended them using phased single-molecule sequencing or BAC clones. We observed that only four genes contained sequences conserved in all analyzed Phoenix males. Most of these sequences showed similarity to a single genomic locus in the closely related monoecious oil palm. CYP703 and GPAT3, two single copy genes present in males and critical for male flower development in other monocots, were absent in females. A LOG-like gene appears translocated into the Y-linked region and is suggested to play a role in suppressing female flowers. Our data are consistent with a two-mutation model for the evolution of dioecy in Phoenix.The origin and evolution of separate sexes in plants are long-standing questions. Here, the authors use genus-wide sequencing to identify sex determining candidate genes in the genus Phoenix and demonstrate the consistence with the previously proposed two-mutation model.
Frontiers in Plant Science | 2017
Diego F. Cuadros; Anngie Hernandez; Maria F. Torres; Diana M. Torres; Adam J. Branscum; Diego F. Rincon
The potato yellow vein disease, caused by the potato yellow vein virus (PYVV), is a limiting potato disease in northern South America. The virus can be transmitted either by the greenhouse whitefly (GWF), Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae), or through vegetative propagules, such as infected tubers. Recently, GWF populations have been spotlighted as one of the main drivers of PYVV re-emergence, and consequently, PYVV management has been predominantly directed toward vector control, which is heavily based on insecticide use. However, the drivers of the PYVV outbreaks as well as the contribution of GWF populations on the spread of PYVV among potato crops are still not completely understood. This study aims to assess the role of the GWF as a driver of the PYVV epidemic in the potato-producing areas in Colombia, one of the countries more severely affected by the PYVV epidemic, and whose geography allows the study of the spatial association between the vector and the disease epidemic across a wide altitude range. The geographical clusters where the PYVV epidemic is concentrated, as well as those of farms affected by the GWF were identified using a novel spatial epidemiology approach. The influence of altitude range on the association between PYVV and T. vaporarioum was also assessed. We found a relatively poor spatial association between PYVV epidemic and the presence of the GWF, especially at altitudes above 3,000 m above mean sea level. Furthermore, GWF populations could only explain a small fraction of the extent of the PYVV epidemic in Colombia. Movement of infected seed tubers might be the main mechanism of dispersion, and could be a key driver for the PYVV infection among potato crops. Agricultural policies focused on improving quality of seed tubers and their appropriate distribution could be the most efficient control intervention against PYVV dispersion.
BMC Genomics | 2014
Lisa Sara Mathew; Manuel Spannagl; Ameena Al-Malki; Binu George; Maria F. Torres; Eman Al-Dous; Eman K. Al-Azwani; Emad Hussein; Sweety Mathew; Klaus F. X. Mayer; Yasmin Mohamoud; Karsten Suhre; Joel A. Malek