Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa M. Mehlmann is active.

Publication


Featured researches published by Lisa M. Mehlmann.


Development | 2009

Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte.

Rachael P. Norris; William J. Ratzan; Marina Freudzon; Lisa M. Mehlmann; Judith Krall; Matthew A. Movsesian; Huanchen Wang; Hengming Ke; Viacheslav O. Nikolaev; Laurinda A. Jaffe

Mammalian oocytes are arrested in meiotic prophase by an inhibitory signal from the surrounding somatic cells in the ovarian follicle. In response to luteinizing hormone (LH), which binds to receptors on the somatic cells, the oocyte proceeds to second metaphase, where it can be fertilized. Here we investigate how the somatic cells regulate the prophase-to-metaphase transition in the oocyte, and show that the inhibitory signal from the somatic cells is cGMP. Using FRET-based cyclic nucleotide sensors in follicle-enclosed mouse oocytes, we find that cGMP passes through gap junctions into the oocyte, where it inhibits the hydrolysis of cAMP by the phosphodiesterase PDE3A. This inhibition maintains a high concentration of cAMP and thus blocks meiotic progression. LH reverses the inhibitory signal by lowering cGMP levels in the somatic cells (from ∼2 μM to ∼80 nM at 1 hour after LH stimulation) and by closing gap junctions between the somatic cells. The resulting decrease in oocyte cGMP (from ∼1 μM to ∼40 nM) relieves the inhibition of PDE3A, increasing its activity by ∼5-fold. This causes a decrease in oocyte cAMP (from ∼700 nM to ∼140 nM), leading to the resumption of meiosis.


Development | 2008

Luteinizing hormone causes MAP kinase-dependent phosphorylation and closure of connexin 43 gap junctions in mouse ovarian follicles: one of two paths to meiotic resumption

Rachael P. Norris; Marina Freudzon; Lisa M. Mehlmann; Anne E. Cowan; Alexander M. Simon; David L. Paul; Paul D. Lampe; Laurinda A. Jaffe

Luteinizing hormone (LH) acts on ovarian follicles to reinitiate meiosis in prophase-arrested mammalian oocytes, and this has been proposed to occur by interruption of a meioisis-inhibitory signal that is transmitted through gap junctions into the oocyte from the somatic cells that surround it. To investigate this idea, we microinjected fluorescent tracers into live antral follicle-enclosed mouse oocytes, and we demonstrate for the first time that LH causes a decrease in the gap junction permeability between the somatic cells, prior to nuclear envelope breakdown (NEBD). The decreased permeability results from the MAP kinase-dependent phosphorylation of connexin 43 on serines 255, 262 and 279/282. We then tested whether the inhibition of gap junction communication was sufficient and necessary for the reinitiation of meiosis. Inhibitors that reduced gap junction permeability caused NEBD, but an inhibitor of MAP kinase activation that blocked gap junction closure in response to LH did not prevent NEBD. Thus, both MAP kinase-dependent gap junction closure and another redundant pathway function in parallel to ensure that meiosis resumes in response to LH.


Journal of Cell Biology | 2005

Regulation of meiotic prophase arrest in mouse oocytes by GPR3, a constitutive activator of the Gs G protein

Leon Freudzon; Rachael P. Norris; Arthur R. Hand; Shigeru Tanaka; Yoshinaga Saeki; Teresa L. Z. Jones; Mark M. Rasenick; Catherine H. Berlot; Lisa M. Mehlmann; Laurinda A. Jaffe

The arrest of meiotic prophase in mouse oocytes within antral follicles requires the G protein Gs and an orphan member of the G protein–coupled receptor family, GPR3. To determine whether GPR3 activates Gs, the localization of Gαs in follicle-enclosed oocytes from Gpr3 +/+ and Gpr3 −/− mice was compared by using immunofluorescence and GαsGFP. GPR3 decreased the ratio of Gαs in the oocyte plasma membrane versus the cytoplasm and also decreased the amount of Gαs in the oocyte. Both of these properties indicate that GPR3 activates Gs. The follicle cells around the oocyte are also necessary to keep the oocyte in prophase, suggesting that they might activate GPR3. However, GPR3-dependent Gs activity was similar in follicle-enclosed and follicle-free oocytes. Thus, the maintenance of prophase arrest depends on the constitutive activity of GPR3 in the oocyte, and the follicle cell signal acts by a means other than increasing GPR3 activity.


Developmental Biology | 2008

Generation of mouse oocytes defective in cAMP synthesis and degradation: endogenous cyclic AMP is essential for meiotic arrest.

Sergio Vaccari; Kathleen Horner; Lisa M. Mehlmann; Marco Conti

Although it is established that cAMP accumulation plays a pivotal role in preventing meiotic resumption in mammalian oocytes, the mechanisms controlling cAMP levels in the female gamete have remained elusive. Both production of cAMP via GPCRs/Gs/adenylyl cyclases endogenous to the oocyte as well as diffusion from the somatic compartment through gap junctions have been implicated in maintaining cAMP at levels that preclude maturation. Here we have used a genetic approach to investigate the different biochemical pathways contributing to cAMP accumulation and maturation in mouse oocytes. Because cAMP hydrolysis is greatly decreased and cAMP accumulates above a threshold, oocytes deficient in PDE3A do not resume meiosis in vitro or in vivo, resulting in complete female infertility. In vitro, inactivation of Gs or downregulation of the GPCR GPR3 causes meiotic resumption in the Pde3a null oocytes. Crossing of Pde3a(-/-) mice with Gpr3(-/-) mice causes partial recovery of female fertility. Unlike the complete meiotic block of the Pde3a null mice, oocyte maturation is restored in the double knockout, although it occurs prematurely as described for the Gpr3(-/-) mouse. The increase in cAMP that follows PDE3A ablation is not detected in double mutant oocytes, confirming that GPR3 functions upstream of PDE3A in the regulation of oocyte cAMP. Metabolic coupling between oocytes and granulosa cells was not affected in follicles from the single or double mutant mice, suggesting that diffusion of cAMP is not prevented. Finally, simultaneous ablation of GPR12, an additional receptor expressed in the oocyte, does not modify the Gpr3(-/-) phenotype. Taken together, these findings demonstrate that Gpr3 is epistatic to Pde3a and that fertility as well as meiotic arrest in the PDE3A-deficient oocyte is dependent on the activity of GPR3. These findings also suggest that cAMP diffusion through gap junctions or the activity of additional receptors is not sufficient by itself to maintain the meiotic arrest in the mouse oocyte.


Biology of Reproduction | 2008

Meiotic Arrest in Human Oocytes Is Maintained by a Gs Signaling Pathway

A. Diluigi; Vanessa N. Weitzman; Margaret C. Pace; L. Siano; Donald Maier; Lisa M. Mehlmann

Abstract In mammalian oocytes, the maintenance of meiotic prophase I arrest prior to the surge of LH that stimulates meiotic maturation depends on a high level of cAMP within the oocyte. In mouse and rat, the cAMP is generated in the oocyte, and this requires the activity of a constitutively active, Gs–linked receptor, GPR3 or GPR12, respectively. To examine if human oocyte meiotic arrest depends on a similar pathway, we used RT-PCR and Western blotting to look at whether human oocytes express the same components for maintaining arrest as rodent oocytes. RNA encoding GPR3, but not GPR12, was expressed. RNA encoding adenylate cyclase type 3, which is the major adenylate cyclase required for maintaining meiotic arrest in the mouse oocyte, was also expressed, as was Gαs protein. To determine if this pathway is functional in the human oocyte, we examined the effect of injecting a function-blocking antibody against Gαs on meiotic resumption. This antibody stimulated meiotic resumption of human oocytes that were maintained at the prophase I stage using a phosphodiesterase inhibitor. These results demonstrate that human oocytes maintain meiotic arrest prior to the LH surge using a signaling pathway similar to that of rodent oocytes.


Biology of Reproduction | 2009

Maturation, Fertilization, and the Structure and Function of the Endoplasmic Reticulum in Cryopreserved Mouse Oocytes

Vanessa N. Weitzman; Donald Maier; Lisa M. Mehlmann

Abstract Oocyte cryopreservation is a promising technology that could benefit women undergoing assisted reproduction. Most studies examining the effects of cryopreservation on fertilization and developmental competence have been done using metaphase II-stage oocytes, while fewer studies have focused on freezing oocytes at the germinal vesicle (GV) stage, followed by in vitro maturation. Herein, we examined the effects of vitrifying GV-stage mouse oocytes on cytoplasmic structure and on the ability to undergo cytoplasmic changes necessary for proper fertilization and early embryonic development. We examined the endoplasmic reticulum (ER) as one indicator of cytoplasmic structure, as well as the ability of oocytes to develop Ca2+ release mechanisms following vitrification and in vitro maturation. Vitrified GV-stage oocytes matured in culture to metaphase II at a rate comparable to that of controls. These oocytes had the capacity to release Ca2+ following injection of inositol 1,4,5-trisphosphate, demonstrating that Ca2+ release mechanisms developed during meiotic maturation. The ER remained intact during the vitrification procedure as assessed using the lipophilic fluorescent dye DiI. However, the reorganization of the ER that occurs during in vivo maturation was impaired in oocytes that were vitrified before oocyte maturation. These results show that vitrification of GV-stage oocytes does not affect nuclear maturation or the continuity of the ER, but normal cytoplasmic maturation as assessed by the reorganization of the ER is disrupted. Deficiencies in factors that are responsible for proper ER reorganization during oocyte maturation could contribute to the low developmental potential previously reported in vitrified in vitro-matured oocytes.


Biochemical Journal | 2012

Embryonic poly(A)-binding protein (EPAB) is required for oocyte maturation and female fertility in mice

Ozlem Guzeloglu-Kayisli; Maria D. Lalioti; Fulya Aydiner; Isaac E. Sasson; Orkan Ilbay; Denny Sakkas; Lisa M. Mehlmann; Emre Seli

Gene expression during oocyte maturation and early embryogenesis up to zygotic genome activation requires translational activation of maternally-derived mRNAs. EPAB [embryonic poly(A)-binding protein] is the predominant poly(A)-binding protein during this period in Xenopus, mouse and human. In Xenopus oocytes, ePAB stabilizes maternal mRNAs and promotes their translation. To assess the role of EPAB in mammalian reproduction, we generated Epab-knockout mice. Although Epab(-/-) males and Epab(+/-) of both sexes were fertile, Epab(-/-) female mice were infertile, and could not generate embryos or mature oocytes in vivo or in vitro. Epab(-/-) oocytes failed to achieve translational activation of maternally-stored mRNAs upon stimulation of oocyte maturation, including Ccnb1 (cyclin B1) and Dazl (deleted in azoospermia-like) mRNAs. Microinjection of Epab mRNA into Epab(-/-) germinal vesicle stage oocytes did not rescue maturation, suggesting that EPAB is also required for earlier stages of oogenesis. In addition, late antral follicles in the ovaries of Epab(-/-) mice exhibited impaired cumulus expansion, and a 8-fold decrease in ovulation, associated with a significant down-regulation of mRNAs encoding the EGF (epidermal growth factor)-like growth factors Areg (amphiregulin), Ereg (epiregulin) and Btc (betacellulin), and their downstream regulators, Ptgs2 (prostaglandin synthase 2), Has2 (hyaluronan synthase 2) and Tnfaip6 (tumour necrosis factor α-induced protein 6). The findings from the present study indicate that EPAB is necessary for oogenesis, folliculogenesis and female fertility in mice.


Biology of Reproduction | 2010

Reorganization of the Endoplasmic Reticulum and Development of Ca2+ Release Mechanisms During Meiotic Maturation of Human Oocytes

J.S. Mann; Lisa M. Mehlmann

Oocyte maturation in rodents is characterized by a dramatic reorganization of the endoplasmic reticulum (ER) and an increase in the ability of an oocyte to release Ca2+ in response to fertilization or inositol 1,4,5-trisphosphate (IP3). We examined if human oocytes undergo similar changes during cytoplasmic meiotic maturation both in vivo and in vitro. Immature, germinal vesicle (GV)-stage oocytes had a fine network of ER throughout the cortex and interior, whereas the ER in the in vivo-matured, metaphase II oocytes was organized in large (diameter, ∼2–3 μm) accumulations throughout the cortex and interior. Likewise, oocytes matured in vitro exhibited cortical and interior clusters with no apparent polarity in regard to the meiotic spindle. In vivo-matured oocytes contained approximately 1.5-fold the amount of IP3 receptor protein and released significantly more Ca2+ in response to IP3 compared with GV-stage oocytes; however, oocytes matured in vitro did not contain more IP3 receptor protein or release more Ca2+ in response to IP3 compared with GV-stage oocytes. These results show that at least one cytoplasmic change occurs during in vitro maturation of human oocytes that might be important for fertilization and subsequent embryonic development, but they suggest that a low developmental competence of in vitro-matured oocytes could be the result of deficiencies in the ability to release Ca2+ at fertilization.


Journal of Cell Science | 2002

Chromosomal association of Ran during meiotic and mitotic divisions

Beth Hinkle; Boris M. Slepchenko; Melissa M. Rolls; Tobias C. Walther; Pascal A. Stein; Lisa M. Mehlmann; Jan Ellenberg; Mark Terasaki

Recent studies in Xenopus egg extracts indicate that the small G protein Ran has a central role in spindle assembly and nuclear envelope reformation. We determined Ran localization and dynamics in cells during M phase. By immunofluorescence, Ran is accumulated on the chromosomes of meiosis-II-arrested Xenopus eggs. In living cells, fluorescently labeled Ran associated with the chromosomes in Xenopus and remained associated during anaphase when eggs were artificially activated. Fluorescent Ran associated with chromosomes in mouse eggs, during meiotic maturation and early embryonic divisions in starfish, and to a lesser degree during mitosis of a cultured mammalian cell line. Chromosomal Ran undergoes constant flux. From photobleach experiments in immature starfish oocytes, chromosomal Ran has a koff of ∼0.06 second-1, and binding analysis suggests that there is a single major site. The chromosomal interactions may serve to keep Ran-GTP in the vicinity of the chromosomes for spindle assembly and nuclear envelope reformation.


Methods of Molecular Biology | 2009

Microinjection of Follicle-Enclosed Mouse Oocytes

Laurinda A. Jaffe; Rachael P. Norris; Marina Freudzon; William J. Ratzan; Lisa M. Mehlmann

The mammalian oocyte develops within a complex of somatic cells known as a follicle, within which signals from the somatic cells regulate the oocyte, and signals from the oocyte regulate the somatic cells. Because isolation of the oocyte from the follicle disrupts these communication pathways, oocyte physiology is best studied within an intact follicle. Here we describe methods for quantitative microinjection of follicle-enclosed mouse oocytes, thus allowing the introduction of signaling molecules as well as optical probes into the oocyte within its physiological environment.

Collaboration


Dive into the Lisa M. Mehlmann's collaboration.

Top Co-Authors

Avatar

Laurinda A. Jaffe

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Rachael P. Norris

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Marina Freudzon

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Terasaki

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Teresa L. Z. Jones

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Tracy F. Uliasz

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

William J. Ratzan

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Alexei V. Evsikov

University of South Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge