Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachael P. Norris is active.

Publication


Featured researches published by Rachael P. Norris.


Development | 2009

Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte.

Rachael P. Norris; William J. Ratzan; Marina Freudzon; Lisa M. Mehlmann; Judith Krall; Matthew A. Movsesian; Huanchen Wang; Hengming Ke; Viacheslav O. Nikolaev; Laurinda A. Jaffe

Mammalian oocytes are arrested in meiotic prophase by an inhibitory signal from the surrounding somatic cells in the ovarian follicle. In response to luteinizing hormone (LH), which binds to receptors on the somatic cells, the oocyte proceeds to second metaphase, where it can be fertilized. Here we investigate how the somatic cells regulate the prophase-to-metaphase transition in the oocyte, and show that the inhibitory signal from the somatic cells is cGMP. Using FRET-based cyclic nucleotide sensors in follicle-enclosed mouse oocytes, we find that cGMP passes through gap junctions into the oocyte, where it inhibits the hydrolysis of cAMP by the phosphodiesterase PDE3A. This inhibition maintains a high concentration of cAMP and thus blocks meiotic progression. LH reverses the inhibitory signal by lowering cGMP levels in the somatic cells (from ∼2 μM to ∼80 nM at 1 hour after LH stimulation) and by closing gap junctions between the somatic cells. The resulting decrease in oocyte cGMP (from ∼1 μM to ∼40 nM) relieves the inhibition of PDE3A, increasing its activity by ∼5-fold. This causes a decrease in oocyte cAMP (from ∼700 nM to ∼140 nM), leading to the resumption of meiosis.


Development | 2008

Luteinizing hormone causes MAP kinase-dependent phosphorylation and closure of connexin 43 gap junctions in mouse ovarian follicles: one of two paths to meiotic resumption

Rachael P. Norris; Marina Freudzon; Lisa M. Mehlmann; Anne E. Cowan; Alexander M. Simon; David L. Paul; Paul D. Lampe; Laurinda A. Jaffe

Luteinizing hormone (LH) acts on ovarian follicles to reinitiate meiosis in prophase-arrested mammalian oocytes, and this has been proposed to occur by interruption of a meioisis-inhibitory signal that is transmitted through gap junctions into the oocyte from the somatic cells that surround it. To investigate this idea, we microinjected fluorescent tracers into live antral follicle-enclosed mouse oocytes, and we demonstrate for the first time that LH causes a decrease in the gap junction permeability between the somatic cells, prior to nuclear envelope breakdown (NEBD). The decreased permeability results from the MAP kinase-dependent phosphorylation of connexin 43 on serines 255, 262 and 279/282. We then tested whether the inhibition of gap junction communication was sufficient and necessary for the reinitiation of meiosis. Inhibitors that reduced gap junction permeability caused NEBD, but an inhibitor of MAP kinase activation that blocked gap junction closure in response to LH did not prevent NEBD. Thus, both MAP kinase-dependent gap junction closure and another redundant pathway function in parallel to ensure that meiosis resumes in response to LH.


Developmental Biology | 2012

Luteinizing hormone reduces the activity of the NPR2 guanylyl cyclase in mouse ovarian follicles, contributing to the cyclic GMP decrease that promotes resumption of meiosis in oocytes

Jerid W. Robinson; Meijia Zhang; Leia C. Shuhaibar; Rachael P. Norris; Andreas Geerts; Frank Wunder; John J. Eppig; Lincoln R. Potter; Laurinda A. Jaffe

In preovulatory ovarian follicles of mice, meiotic prophase arrest in the oocyte is maintained by cyclic GMP from the surrounding granulosa cells that diffuses into the oocyte through gap junctions. The cGMP is synthesized in the granulosa cells by the transmembrane guanylyl cyclase natriuretic peptide receptor 2 (NPR2) in response to the agonist C-type natriuretic peptide (CNP). In response to luteinizing hormone (LH), cGMP in the granulosa cells decreases, and as a consequence, oocyte cGMP decreases and meiosis resumes. Here we report that within 20 min, LH treatment results in decreased guanylyl cyclase activity of NPR2, as determined in the presence of a maximally activating concentration of CNP. This occurs by a process that does not reduce the amount of NPR2 protein. We also show that by a slower process, first detected at 2h, LH decreases the amount of CNP available to bind to the receptor. Both of these LH actions contribute to decreasing cGMP in the follicle, thus signaling meiotic resumption in the oocyte.


Biochimica et Biophysica Acta | 2012

Connexin43 phosphorylation in brain, cardiac, endothelial and epithelial tissues

Lucrecia Márquez-Rosado; Joell L. Solan; Clarence A. Dunn; Rachael P. Norris; Paul D. Lampe

Gap junctions, composed of proteins from the connexin family, allow for intercellular communication between cells in essentially all tissues. There are 21 connexin genes in the human genome and different tissues express different connexin genes. Most connexins are known to be phosphoproteins. Phosphorylation can regulate connexin assembly into gap junctions, gap junction turnover and channel gating. Given the importance of gap junctions in development, proliferation and carcinogenesis, regulation of gap junction phosphorylation in response to wounding, hypoxia and other tissue insults is proving to be critical for cellular response and return to homeostasis. Connexin43 (Cx43) is the most widely and highly expressed gap junction protein, both in cell culture models and in humans, thus more research has been done on it and more reagents to it are available. In particular, antibodies that can report Cx43 phosphorylation status have been created allowing temporal examination of specific phosphorylation events in vivo. This review is focused on the use of these antibodies in tissue in situ, predominantly looking at Cx43 phosphorylation in brain, heart, endothelium and epithelium with reference to other connexins where data is available. These data allow us to begin to correlate specific phosphorylation events with changes in cell and tissue function. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.


Journal of Cell Biology | 2005

Regulation of meiotic prophase arrest in mouse oocytes by GPR3, a constitutive activator of the Gs G protein

Leon Freudzon; Rachael P. Norris; Arthur R. Hand; Shigeru Tanaka; Yoshinaga Saeki; Teresa L. Z. Jones; Mark M. Rasenick; Catherine H. Berlot; Lisa M. Mehlmann; Laurinda A. Jaffe

The arrest of meiotic prophase in mouse oocytes within antral follicles requires the G protein Gs and an orphan member of the G protein–coupled receptor family, GPR3. To determine whether GPR3 activates Gs, the localization of Gαs in follicle-enclosed oocytes from Gpr3 +/+ and Gpr3 −/− mice was compared by using immunofluorescence and GαsGFP. GPR3 decreased the ratio of Gαs in the oocyte plasma membrane versus the cytoplasm and also decreased the amount of Gαs in the oocyte. Both of these properties indicate that GPR3 activates Gs. The follicle cells around the oocyte are also necessary to keep the oocyte in prophase, suggesting that they might activate GPR3. However, GPR3-dependent Gs activity was similar in follicle-enclosed and follicle-free oocytes. Thus, the maintenance of prophase arrest depends on the constitutive activity of GPR3 in the oocyte, and the follicle cell signal acts by a means other than increasing GPR3 activity.


Reproduction | 2010

Epidermal growth factor receptor kinase activity is required for gap junction closure and for part of the decrease in ovarian follicle cGMP in response to LH

Rachael P. Norris; Marina Freudzon; Viacheslav O. Nikolaev; Laurinda A. Jaffe

The meiotic cell cycle in mouse oocytes is arrested in prophase, and then restarted when LH acts on the surrounding granulosa cells. The granulosa cells keep meiosis arrested by providing a source of cGMP that diffuses into the oocyte through gap junctions, and LH restarts the cell cycle by closing the junctions and by decreasing granulosa cell cGMP, thus lowering oocyte cGMP. Epidermal growth factor receptor (EGFR) activation is an essential step in triggering LH-induced meiotic resumption, but its relationship to the cGMP decrease in the follicle is incompletely understood, and its possible function in causing gap junction closure has not been investigated. Here, we use EGFR agonists (epiregulin and amphiregulin) and an EGFR kinase inhibitor (AG1478) to study the function of the EGFR in the signaling pathways leading to the release of oocytes from prophase arrest. Our results indicate that the EGFR kinase contributes to LH-induced meiotic resumption in two different ways. First, it is required for gap junction closure. Second, it is required for an essential component of the decrease in follicle cGMP. Our data show that the EGFR kinase-dependent component of the cGMP decrease is required for LH-induced meiotic resumption, but they also indicate that an as yet unidentified pathway accounts for a large part of the cGMP decrease.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Intercellular signaling via cyclic GMP diffusion through gap junctions restarts meiosis in mouse ovarian follicles.

Leia C. Shuhaibar; Jeremy R. Egbert; Rachael P. Norris; Paul D. Lampe; Viacheslav O. Nikolaev; Martin Thunemann; Lai Wen; Robert Feil; Laurinda A. Jaffe

Significance By imaging cyclic GMP (cGMP) in live ovarian follicles from mice, we show how luteinizing hormone signaling in the follicle periphery results in a rapid decrease in cGMP in the oocyte, thus reinitiating meiosis. Luteinizing hormone signaling lowers cGMP in the outer cells of the follicle, then cGMP in the oocyte decreases as a consequence of diffusion through gap junctions. These findings demonstrate directly that a physiological signal initiated by a stimulus in one region of an intact tissue can travel across many layers of cells via cyclic nucleotide diffusion through gap junctions. Meiosis in mammalian oocytes is paused until luteinizing hormone (LH) activates receptors in the mural granulosa cells of the ovarian follicle. Prior work has established the central role of cyclic GMP (cGMP) from the granulosa cells in maintaining meiotic arrest, but it is not clear how binding of LH to receptors that are located up to 10 cell layers away from the oocyte lowers oocyte cGMP and restarts meiosis. Here, by visualizing intercellular trafficking of cGMP in real-time in live follicles from mice expressing a FRET sensor, we show that diffusion of cGMP through gap junctions is responsible not only for maintaining meiotic arrest, but also for rapid transmission of the signal that reinitiates meiosis from the follicle surface to the oocyte. Before LH exposure, the cGMP concentration throughout the follicle is at a uniformly high level of ∼2–4 μM. Then, within 1 min of LH application, cGMP begins to decrease in the peripheral granulosa cells. As a consequence, cGMP from the oocyte diffuses into the sink provided by the large granulosa cell volume, such that by 20 min the cGMP concentration in the follicle is uniformly low, ∼100 nM. The decrease in cGMP in the oocyte relieves the inhibition of the meiotic cell cycle. This direct demonstration that a physiological signal initiated by a stimulus in one region of an intact tissue can travel across many layers of cells via cyclic nucleotide diffusion through gap junctions could provide a general mechanism for diverse cellular processes.


Development | 2013

FGF signaling induces mesoderm in the hemichordate Saccoglossus kowalevskii

Stephen A. Green; Rachael P. Norris; Mark Terasaki; Christopher J. Lowe

FGFs act in vertebrate mesoderm induction and also play key roles in early mesoderm formation in ascidians and amphioxus. However, in sea urchins initial characterizations of FGF function do not support a role in early mesoderm induction, making the ancestral roles of FGF signaling and mechanisms of mesoderm specification in deuterostomes unclear. In order to better characterize the evolution of mesoderm formation, we have examined the role of FGF signaling during mesoderm development in Saccoglossus kowalevskii, an experimentally tractable representative of hemichordates. We report the expression of an FGF ligand, fgf8/17/18, in ectoderm overlying sites of mesoderm specification within the archenteron endomesoderm. Embryological experiments demonstrate that mesoderm induction in the archenteron requires contact with ectoderm, and loss-of-function experiments indicate that both FGF ligand and receptor are necessary for mesoderm specification. fgf8/17/18 gain-of-function experiments establish that FGF8/17/18 is sufficient to induce mesoderm in adjacent endomesoderm. These experiments suggest that FGF signaling is necessary from the earliest stages of mesoderm specification and is required for all mesoderm development. Furthermore, they suggest that the archenteron is competent to form mesoderm or endoderm, and that FGF signaling from the ectoderm defines the location and amount of mesoderm. When considered in a comparative context, these data support a phylogenetically broad requirement for FGF8/17/18 signaling in mesoderm specification and suggest that FGF signaling played an ancestral role in deuterostome mesoderm formation.


Methods of Molecular Biology | 2009

Microinjection of Follicle-Enclosed Mouse Oocytes

Laurinda A. Jaffe; Rachael P. Norris; Marina Freudzon; William J. Ratzan; Lisa M. Mehlmann

The mammalian oocyte develops within a complex of somatic cells known as a follicle, within which signals from the somatic cells regulate the oocyte, and signals from the oocyte regulate the somatic cells. Because isolation of the oocyte from the follicle disrupts these communication pathways, oocyte physiology is best studied within an intact follicle. Here we describe methods for quantitative microinjection of follicle-enclosed mouse oocytes, thus allowing the introduction of signaling molecules as well as optical probes into the oocyte within its physiological environment.


The Journal of Membrane Biology | 2012

Phosphorylation of Serine Residues in the C-terminal Cytoplasmic Tail of Connexin43 Regulates Proliferation of Ovarian Granulosa Cells

Paul W. Dyce; Rachael P. Norris; Paul D. Lampe; Gerald M. Kidder

Connexin43 (Cx43) forms gap junctions that couple the granulosa cells of ovarian follicles. In Cx43 knockout mice, follicle growth is restricted as a result of impaired granulosa cell proliferation. We have used these mice to examine the importance of specific Cx43 phosphorylation sites in follicle growth. Serines at residues 255, 262, 279, and 282 are MAP kinase substrates that, when phosphorylated, reduce junctional conductance. Mutant forms of Cx43 were constructed with these serines replaced with amino acids that cannot be phosphorylated. These mutants were transduced into Cx43 knockout ovarian somatic cells that were combined with wild-type oocytes and grafted into immunocompromised female mice permitting follicle growth in vivo. Despite residues 255 or 262 being mutated to prevent their being phosphorylated, recombinant ovaries constructed with these mutants were able to rescue the null phenotype, restoring complete folliculogenesis. In contrast, Cx43 with serine to alanine mutations at both residues 279 and 282 or at all four residues failed to rescue folliculogenesis; the mutant molecules were largely confined to intracellular sites, with few gap junctions. Using an in vitro proliferation assay, we confirmed a decrease in proliferation of granulosa cells expressing the double mutant construct. These results indicate that Cx43 phosphorylation by MAP kinase at serines 279 and 282 occurs in granulosa cells of early follicles and that this is involved in regulating follicle development.

Collaboration


Dive into the Rachael P. Norris's collaboration.

Top Co-Authors

Avatar

Laurinda A. Jaffe

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Lisa M. Mehlmann

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Marina Freudzon

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Paul D. Lampe

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arthur R. Hand

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Mark Terasaki

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

William J. Ratzan

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Gerald M. Kidder

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge