Lisa Marie Langevin
University of Calgary
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lisa Marie Langevin.
NeuroImage: Clinical | 2014
Kevin R. McLeod; Lisa Marie Langevin; Bradley G. Goodyear; Deborah Dewey
Developmental coordination disorder (DCD) and attention deficit/hyperactivity disorder (ADHD) are prevalent childhood disorders that frequently co-occur. Evidence from neuroimaging research suggests that children with these disorders exhibit disruptions in motor circuitry, which could account for the high rate of co-occurrence. The primary objective of this study was to investigate the functional connections of the motor network in children with DCD and/or ADHD compared to typically developing controls, with the aim of identifying common neurophysiological substrates. Resting-state fMRI was performed on seven children with DCD, 21 with ADHD, 18 with DCD + ADHD and 23 controls. Resting-state connectivity of the primary motor cortex was compared between each group and controls, using age as a co-factor. Relative to controls, children with DCD and/or ADHD exhibited similar reductions in functional connectivity between the primary motor cortex and the bilateral inferior frontal gyri, right supramarginal gyrus, angular gyri, insular cortices, amygdala, putamen, and pallidum. In addition, children with DCD and/or ADHD exhibited different age-related patterns of connectivity, compared to controls. These findings suggest that children with DCD and/or ADHD exhibit disruptions in motor circuitry, which may contribute to problems with motor functioning and attention. Our results support the existence of common neurophysiological substrates underlying both motor and attention problems.
Molecular and Cellular Biology | 2008
Pierre Mattar; Lisa Marie Langevin; Kathryn Markham; Natalia Klenin; Salma Shivji; Dawn Zinyk; Carol Schuurmans
ABSTRACT Several transcription factors are essential determinants of a cortical projection neuron identity, but their mode of action (instructive versus permissive) and downstream genetic cascades remain poorly defined. Here, we demonstrate that the proneural basic helix-loop-helix (bHLH) gene Ngn2 instructs a partial cortical identity when misexpressed in ventral telencephalic progenitors, inducing ectopic marker expression in a defined temporal sequence, including early (24 h; Nscl2), intermediate (48 h; BhlhB5), and late (72 h; NeuroD, NeuroD2, Math2, and Tbr1) target genes. Strikingly, cortical gene expression was much more rapidly induced by Ngn2 in the dorsal telencephalon (within 12 to 24 h). We identify the bHLH gene Math3 as a dorsally restricted Ngn2 transcriptional target and cofactor, which synergizes with Ngn2 to accelerate target gene transcription in the cortex. Using a novel in vivo luciferase assay, we show that Ngn2 generates only ∼60% of the transcriptional drive in ventral versus dorsal telencephalic domains, an activity that is augmented by Math3, providing a mechanistic basis for regional differences in Ngn2 function. Cortical bHLH genes thus cooperate to control transcriptional strength, thereby temporally coordinating downstream gene expression.
The Journal of Pediatrics | 2014
Lisa Marie Langevin; Frank P. MacMaster; Susan Crawford; Catherine Lebel; Deborah Dewey
OBJECTIVE To characterize white matter alterations in children with isolated or concurrent developmental coordination disorder and/or attention-deficit/hyperactivity disorder (ADHD) compared with typically-developing controls, and to determine whether group differences on motor and attention tasks could be explained by differences in diffusion tensor imaging (DTI) measures. STUDY DESIGN In a cohort of children (n = 85) with developmental coordination disorder, ADHD, or combined developmental coordination disorder+ADHD, we examined 3 major white matter tracts involved in attention and motor processes. Using DTI, the corpus callosum, superior longitudinal fasciculus, and cingulum were analyzed with respect to measures of white matter integrity. Differences in fractional anisotropy (FA), mean diffusivity, radial diffusivity, and axial diffusivity were analyzed using ANOVA. Motor and attentional functioning was assessed using standardized tests, and correlated to DTI measures. RESULTS FA reductions were noted in the frontal regions of the corpus callosum for children with ADHD (P = .039), whereas children with developmental coordination disorder displayed similar reductions in regions of the corpus callosum underlying parietal brain regions (P = .040), as well as the left superior longitudinal fasciculus (P = .026). White matter integrity was impacted in both frontal and parietal regions for children with comorbid developmental coordination disorder+ADHD (P = .029; .046). FA was positively correlated with scores on both motor and attentional assessments in a region-specific manner. CONCLUSION Our findings suggest that alterations in the corpus callosum underlie difficulties in motor and attention functioning. These changes are functionally and regionally distinct and could reflect a neurobiological basis for motor and attention disorders in children.
Developmental Dynamics | 2007
Lisa Marie Langevin; Pierre Mattar; Raffaella Scardigli; Myriam Roussigné; Cairine Logan; Patrick Blader; Carol Schuurmans
With the ultimate goal of understanding how genetic modules have evolved in the telencephalon, we set out to modernize the functional analysis of cross‐species cis‐regulatory elements in mouse. In utero electroporation is rapidly replacing transgenesis as the method of choice for gain‐ and loss‐of‐function studies in the murine telencephalon, but the application of this technique to the analysis of transcriptional regulation has yet to be fully explored and exploited. To empirically define the developmental stages required to target specific populations of neurons in the dorsal telencephalon, or pallium, which gives rise to the neocortex in mouse, we performed a temporal and spatial analysis of the migratory properties of electroporated versus birth‐dated cells. Next, we compared the activities of two known Ngn2 enhancers via transgenesis and in utero electroporation, demonstrating that the latter technique more faithfully reports the endogenous telencephalic expression pattern observed in an Ngn2lacZ knock‐in line. Finally, we used this approach to test the telencephalic activities of a series of deletion constructs comprised of the zebrafish ER81 upstream regulatory region, allowing us to identify a previously uncharacterized enhancer that displays cross‐species activity in the murine piriform cortex and lateral neocortex, yet not in more medial domains of the forebrain. Taken together, our data supports the contention that in utero technology can be exploited to rapidly examine the architecture and evolution of pallial‐specific cis‐regulatory elements. Developmental Dynamics 236:1273–1286, 2007.
Developmental Medicine & Child Neurology | 2015
Lisa Marie Langevin; Frank P. MacMaster; Deborah Dewey
Many neurodevelopmental disorders co‐occur yet are rarely studied in terms of brain development. Developmental coordination disorder (DCD) and attention‐deficit–hyperactivity disorder (ADHD) co‐occur at a high frequency and are associated with functional and structural brain alterations. The objective of this study was to examine whether the effects of comorbid motor and attention problems influence cortical thickness in children and whether the pattern of changes for concurrent disorders is distinct from the alterations seen in single disorders.
Journal of Ect | 2014
Xiao-Ru Yang; Adam Kirton; Thomas Christopher Wilkes; Sarah Pradhan; Irene Liu; Natalia Jaworska; Omar Damji; Jamie Keess; Lisa Marie Langevin; Thilinie Rajapakse; Robert Marc Lebel; Mariko Sembo; Marilyn Fife; Frank P. MacMaster
Objective We hypothesized an increase in dorsolateral prefrontal cortex (DLPFC) glutamate levels would occur after 3 weeks of repetitive transcranial magnetic stimulation (rTMS) treatment and a decrease in major depressive disorder (MDD) symptoms. Methods We report 6 patients (4 females) 15 to 21 years of age with treatment-resistant MDD. Participants had a mean (SD) age of 18.7 (1.95) years and a mean (SD) IQ of 102.3 (3.39). Short echo proton magnetic resonance spectroscopy (1H-MRS) was used to quantify glutamate levels in the left DLPFC (4.5 cc) before and after rTMS treatment. Repetitive transcranial magnetic stimulation was localized to the left DLPFC and applied for 15 consecutive weekdays (120% resting motor threshold; 40 pulses over 4 seconds [10 Hz]; intertrain interval, 26 seconds; 75 trains; 3000 pulses). Treatment response was defined as a greater than 50% reduction in Hamilton Depression Rating Scale scores. Short echo proton magnetic resonance spectroscopy data were analyzed with LCModel to determine glutamate concentration. Results After rTMS, treatment responders (n = 4) showed an increase (relative to baseline) in left DLPFC glutamate levels (11%), which corresponded to an improvement in depressive symptom severity (68% Hamilton Depression Rating Scale score reduction). Treatment nonresponders (n = 2) had elevated baseline glutamate levels compared to responders in that same region, which decreased with rTMS (−10%). Procedures were generally well tolerated with no adverse events. Conclusions Repetitive transcranial magnetic stimulation is feasible and possibly efficacious in adolescents with MDD. In responders, rTMS may act by induced elevations in elevating DFPLC glutamate levels in the left DLPFC, thereby leading to symptom improvement.
Journal of Affective Disorders | 2013
Frank P. MacMaster; Normand Carrey; Lisa Marie Langevin
BACKGROUND Abnormalities in the corpus callosum and related white matter projections have been implicated in major depressive disorder (MDD). Although MDD is as common in adolescence as in adulthood, few studies have examined youth near illness onset in order to determine the possible influence of atypical development on the pathophysiology of this disorder. MATERIALS AND METHODS The area of the corpus callosum and its sub-regions were measured in 16 subjects affected by MDD (16.24 ± 2.03 years) and 16 age- and sex-matched healthy controls (16.52 ± 2.20 years) using magnetic resonance imagine (MRI). RESULTS Mann-Whitney U-tests revealed a difference in corpus callosal areas (u=75.00, p=0.047). Corpus callosal area was smaller in MDD participants (5.92 ± 0.50 cm(2)) as compared to age and sex matched controls (6.44 ± 0.75 cm(2)). This difference was isolated to the genu (U=62.00, p=0.012; 2.53 ± 0.34 cm(2) for controls and 2.24 ± 0.20 cm(2) for MDD participants), with no other sub-region demonstrating a significant difference. There was no difference in intracranial area between groups. No structure correlated with clinical or demographic variables. LIMITATIONS Confirmation and extension of our findings requires a larger sample size and usage of diffusion tensor imaging. CONCLUSIONS While preliminary, our findings provide new evidence of abnormalities in the genu of the corpus callosum in early onset depression.
Journal of Visualized Experiments | 2011
Rajiv Dixit; Fuqu Lu; Robert Cantrup; Nicole Gruenig; Lisa Marie Langevin; Deborah M. Kurrasch; Carol Schuurmans
The ability to manipulate gene expression is the cornerstone of modern day experimental embryology, leading to the elucidation of multiple developmental pathways. Several powerful and well established transgenic technologies are available to manipulate gene expression levels in mouse, allowing for the generation of both loss- and gain-of-function models. However, the generation of mouse transgenics is both costly and time consuming. Alternative methods of gene manipulation have therefore been widely sought. In utero electroporation is a method of gene delivery into live mouse embryos(1,2) that we have successfully adapted(3,4). It is largely based on the success of in ovo electroporation technologies that are commonly used in chick(5). Briefly, DNA is injected into the open ventricles of the developing brain and the application of an electrical current causes the formation of transient pores in cell membranes, allowing for the uptake of DNA into the cell. In our hands, embryos can be efficiently electroporated as early as embryonic day (E) 11.5, while the targeting of younger embryos would require an ultrasound-guided microinjection protocol, as previously described(6). Conversely, E15.5 is the latest stage we can easily electroporate, due to the onset of parietal and frontal bone differentiation, which hampers microinjection into the brain. In contrast, the retina is accessible through the end of embryogenesis. Embryos can be collected at any time point throughout the embryonic or early postnatal period. Injection of a reporter construct facilitates the identification of transfected cells. To date, in utero electroporation has been most widely used for the analysis of neocortical development(1,2,3,4). More recent studies have targeted the embryonic retina(7,8,9) and thalamus(10,11,12). Here, we present a modified in utero electroporation protocol that can be easily adapted to target different domains of the embryonic CNS. We provide evidence that by using this technique, we can target the embryonic telencephalon, diencephalon and retina. Representative results are presented, first showing the use of this technique to introduce DNA expression constructs into the lateral ventricles, allowing us to monitor progenitor maturation, differentiation and migration in the embryonic telencephalon. We also show that this technique can be used to target DNA to the diencephalic territories surrounding the 3(rd) ventricle, allowing the migratory routes of differentiating neurons into diencephalic nuclei to be monitored. Finally, we show that the use of micromanipulators allows us to accurately introduce DNA constructs into small target areas, including the subretinal space, allowing us to analyse the effects of manipulating gene expression on retinal development.
NeuroImage: Clinical | 2016
Kevin R. McLeod; Lisa Marie Langevin; Deborah Dewey; Bradley G. Goodyear
Developmental coordination disorder (DCD) and attention-deficit hyperactivity disorder (ADHD) are highly comorbid neurodevelopmental disorders; however, the neural mechanisms of this comorbidity are poorly understood. Previous research has demonstrated that children with DCD and ADHD have altered brain region communication, particularly within the motor network. The structure and function of the motor network in a typically developing brain exhibits hemispheric dominance. It is plausible that functional deficits observed in children with DCD and ADHD are associated with neurodevelopmental alterations in within- and between-hemisphere motor network functional connection strength that disrupt this hemispheric dominance. We used resting-state functional magnetic resonance imaging to examine functional connections of the left and right primary and sensory motor (SM1) cortices in children with DCD, ADHD and DCD + ADHD, relative to typically developing children. Our findings revealed that children with DCD, ADHD and DCD + ADHD exhibit atypical within- and between-hemisphere functional connection strength between SM1 and regions of the basal ganglia, as well as the cerebellum. Our findings further support the assertion that development of atypical motor network connections represents common and distinct neural mechanisms underlying DCD and ADHD. In children with DCD and DCD + ADHD (but not ADHD), a significant correlation was observed between clinical assessment of motor function and the strength of functional connections between right SM1 and anterior cingulate cortex, supplementary motor area, and regions involved in visuospatial processing. This latter finding suggests that behavioral phenotypes associated with atypical motor network development differ between individuals with DCD and those with ADHD.
Development | 2013
S. M. Mahmudul Hasan; Ashley D. Sheen; Angela M. Power; Lisa Marie Langevin; Jieying Xiong; Michael Furlong; Kristine Day; Carol Schuurmans; Joseph T. Opferman; Jacqueline L. Vanderluit
Cortical development requires the precise timing of neural precursor cell (NPC) terminal mitosis. Although cell cycle proteins regulate terminal mitosis, the factors that influence the cell cycle machinery are incompletely understood. Here we show in mice that myeloid cell leukemia 1 (Mcl1), an anti-apoptotic Bcl-2 protein required for the survival of NPCs, also regulates their terminal differentiation through the cell cycle regulator p27Kip1. A BrdU-Ki67 cell profiling assay revealed that in utero electroporation of Mcl1 into NPCs in the embryonic neocortex increased NPC cell cycle exit (the leaving fraction). This was further supported by a decrease in proliferating NPCs (Pax6+ radial glial cells and Tbr2+ neural progenitors) and an increase in differentiating cells (Dcx+ neuroblasts and Tbr1+ neurons). Similarly, BrdU birth dating demonstrated that Mcl1 promotes premature NPC terminal mitosis giving rise to neurons of the deeper cortical layers, confirming their earlier birthdate. Changes in Mcl1 expression within NPCs caused concomitant changes in the levels of p27Kip1 protein, a key regulator of NPC differentiation. Furthermore, in the absence of p27Kip1, Mcl1 failed to induce NPC cell cycle exit, demonstrating that p27Kip1 is required for Mcl1-mediated NPC terminal mitosis. In summary, we have identified a novel physiological role for anti-apoptotic Mcl1 in regulating NPC terminal differentiation.