Lisa Morano
University of Houston–Downtown
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lisa Morano.
Phytopathology | 2010
Xiaoli Yuan; Lisa Morano; Robin E. Bromley; Senanu Spring-Pearson; Richard Stouthamer; Leonard Nunney
Using a modified multilocus sequence typing (MLST) scheme for the bacterial plant pathogen Xylella fastidiosa based on the same seven housekeeping genes employed in a previously published MLST, we studied the genetic diversity of two subspecies, X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. sandyi, which cause Pierces disease and oleander leaf scorch, respectively. Typing of 85 U.S. isolates (plus one from northern Mexico) of X. fastidiosa subsp. fastidiosa from 15 different plant hosts and 21 isolates of X. fastidiosa subsp. sandyi from 4 different hosts in California and Texas supported their subspecific status. Analysis using the MLST genes plus one cell-surface gene showed no significant genetic differentiation based on geography or host plant within either subspecies. Two cases of homologous recombination (with X. fastidiosa subsp. multiplex, the third U.S. subspecies) were detected in X. fastidiosa subsp. fastidiosa. Excluding recombination, MLST site polymorphism in X. fastidiosa subsp. fastidiosa (0.048%) and X. fastidiosa subsp. sandyi (0.000%) was substantially lower than in X. fastidiosa subsp. multiplex (0.240%), consistent with the hypothesis that X. fastidiosa subspp. fastidiosa and sandyi were introduced into the United States (probably just prior to 1880 and 1980, respectively). Using whole-genome analysis, we showed that MLST is more effective at genetic discrimination at the specific and subspecific level than other typing methods applied to X. fastidiosa. Moreover, MLST is the only technique effective in detecting recombination.
Applied and Environmental Microbiology | 2013
Leonard Nunney; Danel B. Vickerman; Robin E. Bromley; Stephanie A. Russell; John R. Hartman; Lisa Morano; Richard Stouthamer
ABSTRACT The bacterial pathogen, Xylella fastidiosa, infects many plant species in the Americas, making it a good model for investigating the genetics of host adaptation. We used multilocus sequence typing (MLST) to identify isolates of the native U.S. subsp. multiplex that were largely unaffected by intersubspecific homologous recombination (IHR) and to investigate how their evolutionary history influences plant host specialization. We identified 110 “non-IHR” isolates, 2 minimally recombinant “intermediate” ones (including the subspecific type), and 31 with extensive IHR. The non-IHR and intermediate isolates defined 23 sequence types (STs) which we used to identify 22 plant hosts (73% trees) characteristic of the subspecies. Except for almond, subsp. multiplex showed no host overlap with the introduced subspecies (subspecies fastidiosa and sandyi). MLST sequences revealed that subsp. multiplex underwent recent radiation (<25% of subspecies age) which included only limited intrasubspecific recombination (ρ/θ = 0.02); only one isolated lineage (ST50 from ash) was older. A total of 20 of the STs grouped into three loose phylogenetic clusters distinguished by nonoverlapping hosts (excepting purple leaf plum): “almond,” “peach,” and “oak” types. These host differences were not geographical, since all three types also occurred in California. ST designation was a good indicator of host specialization. ST09, widespread in the southeastern United States, only infected oak species, and all peach isolates were ST10 (from California, Florida, and Georgia). Only ST23 had a broad host range. Hosts of related genotypes were sometimes related, but often host groupings crossed plant family or even order, suggesting that phylogenetically plastic features of hosts affect bacterial pathogenicity.
Current Microbiology | 2004
Dulce Carbajal; Kevin A. Morano; Lisa Morano
The plant pathogen Xylella fastidiosa is the causative agent of a number of diseases of economically important crops, including Pierce’s disease that affects grapevines. Using a commercially available antibody specific for X. fastidiosa, we have established a protocol for microscopic identification of the bacterium by indirect immunofluorescence. This antibody clearly labels an uncharacterized antigen concentrated at a single pole of X. fastidiosa cells, but does not react with a non-Xylella control. This technique was also performed successfully on xylem exudates from several different plant genera and correlated well with standard enzyme-linked immunosorbent assay tests. These results establish a novel method for in situ assessment of X. fastidiosa infection from host plants.
Applied and Environmental Microbiology | 2014
Leonard Nunney; Donald L. Hopkins; Lisa Morano; Stephanie E. Russell; Richard Stouthamer
ABSTRACT The bacterial pathogen Xylella fastidiosa infects xylem and causes disease in many plant species in the Americas. Different subspecies of this bacterium and different genotypes within subspecies infect different plant hosts, but the genetics of host adaptation are unknown. Here we examined the hypothesis that the introduction of novel genetic variation via intersubspecific homologous recombination (IHR) facilitates host shifts. We investigated IHR in 33 X. fastidiosa subsp. multiplex isolates previously identified as recombinant based on 8 loci (7 multilocus sequence typing [MLST] loci plus 1 locus). We found significant evidence of introgression from X. fastidiosa subsp. fastidiosa in 4 of the loci and, using published data, evidence of IHR in 6 of 9 additional loci. Our data showed that IHR regions in 2 of the 4 loci were inconsistent (12 mismatches) with X. fastidiosa subsp. fastidiosa alleles found in the United States but consistent with alleles from Central America. The other two loci were consistent with alleles from both regions. We propose that the recombinant forms all originated via genomewide recombination of one X. fastidiosa subsp. multiplex ancestor with one X. fastidiosa subsp. fastidiosa donor from Central America that was introduced into the United States but subsequently disappeared. Using all of the available data, 5 plant hosts of the recombinant types were identified, 3 of which also supported non-IHR X. fastidiosa subsp. multiplex, but 2 were unique to recombinant types from blueberry (7 isolates from Georgia, 3 from Florida); and blackberry (1 each from Florida and North Carolina), strongly supporting the hypothesis that IHR facilitated a host shift to blueberry and possibly blackberry.
Current Microbiology | 2008
Lisa Morano; Blake Bextine; Dennis A. Garcia; Shermel V. Maddox; Stanley Gunawan; Natalie J. Vitovsky; Mark C. Black
Xylella fastidiosa is the causative agent of Pierce’s Disease of grape. No published record of X. fastidiosa genetics in Texas exists despite growing financial risk to the U.S. grape industry, a Texas population of the glassy-winged sharpshooter insect vector (Homalodiscavitripennis) now spreading in California, and evidence that the bacterium is ubiquitous to southern states. Using sequences of conserved gyrB and mopB genes, we have established at least two strains in Texas, grape strain and ragweed strain, corresponding genetically with subsp. piercei and multiplex, respectively. The grape strain in Texas is found in Vitis vinifera varieties, hybrid vines, and wild Vitis near vineyards, whereas the ragweed strain in Texas is found in annuals, shrubs, and trees near vineyards or other areas. RFLP and QRT PCR techniques were used to differentiate grape and ragweed strains with greater efficiency than sequencing and are practical for screening numerous X. fastidiosa isolates for clade identity.
Journal of Plant Pathology & Microbiology | 2011
Brittany Pierce; Lisa Morano; Blake Bextine
Xylella fastidiosa is a gram-negative, xylem-limited, plant pathogenic bacterium that is transmitted between hosts by the glassy-winged sharpshooter ( Homalodisca vitripennis) . Multiple subspecies of X. fastidiosa occur, exhibiting some degree of host specificity. X. fastidiosa subsp. fastidiosa is the causal agent of Pierce’s disease of grapevine. X. fastidiosa subsp. multiplex and X. fastidiosa subsp. sandyi are commonly found in North America but do not cause Pierce’s disease. Rapid diagnostics to determine presence of X. fastidiosa and differentiation of these subspecies is necessary for effective management and prevention of Pierce’s disease. In this study, three methods to distinguish X.fastidiosa subspecies using Quantitative Real-Time Polymerase Chain Reaction were compared. SYBR ® green, Eva Green ® , and Takara SYBR Green ® melt curve analysis of partial gyraseB amplicons, zot1 gene amplicons, and five tonB amplicons were evaluated for consistency and quality. Diagnostic protocols based on TaqMan ® and Molecular Beacon ® hybridization probes were developed with an emphasis placed on a X. fastidiosa subsp. multiplex insertion in the zot1 gene. We found SYBR ® Green and TaqMan ® based diagnostic protocols did not provide the necessary resolution for accurate and consistent differentiation of X. fastidiosa subspecies. Diagnostic protocols we developed utilizing the Molecular Beacon ® probe allow for highly specific and reliable differentiation of X. fastidiosa subspecies, even in cases where subspecies were mixed in solution. These new methods provide a more reliable protocol by which the subspecies of X. fastidiosa can be rapidly identified for the purposes of laboratory study and sample diagnostics.
American Journal of Enology and Viticulture | 2006
David R. Smart; Erin Schwass; Alan N. Lakso; Lisa Morano
American Journal of Enology and Viticulture | 2007
Lee Anne McGaha; Brian E. Jackson; Blake Bextine; Deanna McCullough; Lisa Morano
American Journal of Enology and Viticulture | 2006
Prince Buzombo; Jose Jaimes; Vien Lam; Kimberly Cantrell; Melinda Harkness; Deanna McCullough; Lisa Morano
Proceedings of the soil environment and vine mineral nutrition symposium, 2005, ISBN 0-9630711-4-9, págs. 153-169 | 2005
David R. Smart; Lisa Morano; Erin Schwass; Alan N. Lakso