Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa N. Murphy is active.

Publication


Featured researches published by Lisa N. Murphy.


Science | 2015

The Atlantic Multidecadal Oscillation without a role for ocean circulation

Amy C. Clement; Katinka Bellomo; Lisa N. Murphy; Mark A. Cane; Thorsten Mauritsen; Gaby Rädel; Bjorn Stevens

Ocean circulation changes not needed What causes the pattern of sea surface temperature change that is seen in the North Atlantic Ocean? This naturally occurring quasi-cyclical variation, known as the Atlantic Multidecadal Oscillation (AMO), affects weather and climate. Some have suggested that the AMO is a consequence of variable large-scale ocean circulation. Clement et al. suggest otherwise. They find that the pattern of AMO variability can be produced in a model that does not include ocean circulation changes, but only the effects of changes in air temperatures and winds. Science, this issue p. 320 The Atlantic Multidecadal Oscillation does not depend on variable whole-ocean circulation. The Atlantic Multidecadal Oscillation (AMO) is a major mode of climate variability with important societal impacts. Most previous explanations identify the driver of the AMO as the ocean circulation, specifically the Atlantic Meridional Overturning Circulation (AMOC). Here we show that the main features of the observed AMO are reproduced in models where the ocean heat transport is prescribed and thus cannot be the driver. Allowing the ocean circulation to interact with the atmosphere does not significantly alter the characteristics of the AMO in the current generation of climate models. These results suggest that the AMO is the response to stochastic forcing from the mid-latitude atmospheric circulation, with thermal coupling playing a role in the tropics. In this view, the AMOC and other ocean circulation changes would be largely a response to, not a cause of, the AMO.


Geophysical Research Letters | 2016

Paleodust variability since the Last Glacial Maximum and implications for iron inputs to the ocean

Samuel Albani; Natalie M. Mahowald; Lisa N. Murphy; R. Raiswell; J. K. Moore; Robert F. Anderson; David McGee; Louisa I. Bradtmiller; Barbara Delmonte; Paul Hesse; Paul Andrew Mayewski

Author(s): Albani, S; Mahowald, NM; Murphy, LN; Raiswell, R; Moore, JK; Anderson, RF; McGee, D; Bradtmiller, LI; Delmonte, B; Hesse, PP; Mayewski, PA | Abstract: ©2016. American Geophysical Union. All Rights Reserved. Changing climate conditions affect dust emissions and the global dust cycle, which in turn affects climate and biogeochemistry. In this study we use observationally constrained model reconstructions of the global dust cycle since the Last Glacial Maximum, combined with different simplified assumptions of atmospheric and sea ice processing of dust-borne iron, to provide estimates of soluble iron deposition to the oceans. For different climate conditions, we discuss uncertainties in model-based estimates of atmospheric processing and dust deposition to key oceanic regions, highlighting the large degree of uncertainty of this important variable for ocean biogeochemistry and the global carbon cycle. We also show the role of sea ice acting as a time buffer and processing agent, which results in a delayed and pulse-like soluble iron release into the ocean during the melting season, with monthly peaks up to ~17 Gg/month released into the Southern Oceans during the Last Glacial Maximum (LGM).


Geophysical Research Letters | 2017

The Role of Historical Forcings in Simulating the Observed Atlantic Multidecadal Oscillation

Lisa N. Murphy; Katinka Bellomo; Mark A. Cane; Amy C. Clement

We analyze the Atlantic multidecadal oscillation (AMO) in the preindustrial (PI) and historical (HIST) simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to assess the drivers of the observed AMO from 1865 to 2005. We draw 141 year samples from the 41 CMIP5 models PI runs and compare the correlation and variance between the observed AMO and the simulated PI and HIST AMO. The correlation coefficients in 38 forced (HIST) models are above the 90% confidence level and explain up to 56% of the observed variance. The probability that any of the unforced (PI) models do as well is less than 3% in 31 models. Multidecadal variability is larger in 39 CMIP5 HIST simulations and in all HIST members of the Community Earth System Model Large Ensemble than their corresponding PI. We conclude that there is an essential role for external forcing in driving the observed AMO.


Science | 2016

Response to Comment on “The Atlantic Multidecadal Oscillation without a role for ocean circulation”

Amy C. Clement; Mark A. Cane; Lisa N. Murphy; Katinka Bellomo; Thorsten Mauritsen; Bjorn Stevens

Zhang et al. interpret the mixed-layer energy budget in models as showing that “ocean dynamics play a central role in the AMO.” Here, we show that their diagnostics cannot reveal the causes of the Atlantic Multidecadal Oscillation (AMO) and that their results can be explained with minimal ocean influence. Hence, we reaffirm our findings that the AMO in models can be understood primarily as the upper-ocean thermal response to stochastic atmospheric forcing.


Geophysical Research Letters | 2016

New Observational Evidence for a Positive Cloud Feedback that Amplifies the Atlantic Multidecadal Oscillation

Katinka Bellomo; Amy C. Clement; Lisa N. Murphy; Lorenzo M. Polvani; Mark A. Cane

The Atlantic Multidecadal Oscillation (AMO) affects climate variability in the North Atlantic basin and adjacent continents with potential societal impacts. Previous studies based on model simulations and short-term satellite retrievals hypothesized an important role for cloud radiative forcing in modulating the persistence of the AMO in the tropics, but this mechanism remains to be tested with long-term observational records. Here we analyze datasets that span multiple decades and present new observational evidence for a positive feedback between total cloud amount, sea-surface temperature (SST), and atmospheric circulation that can strengthen the persistence and amplitude of the tropical branch of the AMO. In addition, we estimate cloud amount feedback from observations and quantify its impact on SST with idealized modeling experiments. From these experiments we conclude that cloud feedbacks can account for 10% to 31% of the observed SST anomalies associated with the AMO over the tropics.


Journal of Climate | 2017

Low-Pass Filtering, Heat Flux, and Atlantic Multidecadal Variability

Mark A. Cane; Amy C. Clement; Lisa N. Murphy; Katinka Bellomo

AbstarctIn this model study the authors explore the possibility that the internal component of the Atlantic multidecadal oscillation (AMO) sea surface temperature (SST) signal is indistinguishable from the response to white noise forcing from the atmosphere and ocean. Here, complex models are compared without externally varying forcing with a one-dimensional noise-driven model for SST. General analytic expressions are obtained for both unfiltered and low-pass filtered lead–lag correlations. It is shown that this simple model reproduces many of the simulated lead–lag relationships among temperature, rate of change of temperature, and surface heat flux. It is concluded that the finding that at low frequencies the ocean loses heat to the atmosphere when the temperature is warm, which has been interpreted as showing that the ocean circulation drives the AMO, is a necessary consequence of the fact that at long periods the net heat flux (ocean plus atmosphere) is zero to a good approximation. It does not distin...


Journal of Climate | 2012

Local and Remote Climate Impacts from Expansion of Woody Biomass for Bioenergy Feedstock in the Southeastern United States

Lisa N. Murphy; William J. Riley; William D. Collins

AbstractMany efforts have been taken to find energy alternatives to reduce anthropogenic influences on climate. Recent studies have shown that using land for bioenergy plantations may be more cost effective and provide a greater potential for CO2 abatement than using land for carbon sequestration. Native southern U.S. pines (i.e., loblolly) have excellent potential as bioenergy feedstocks. However, the land-cover change due to expansion of biofuels may impact climate through biophysical feedbacks. Here, the authors access the local and remote consequences of greater forest management and biofuel feedstock expansion on climate and hydrology using a global climate model, the NCAR Community Climate System Model, version 4 (CCSM4).The authors examine a plausible U.S. Department of Energy (DOE) biofuel feedstock goal by afforesting 50 million acres of C4 grasslands in the southeastern United States with an optimized loblolly plant functional type. Changes in sensible and latent heat fluxes are related to incre...


Journal of Geophysical Research | 2017

Holocene black carbon in Antarctica paralleled Southern Hemisphere climate

Monica Arienzo; Joseph R. McConnell; Lisa N. Murphy; Nathan Chellman; Sarah B. Das; Sepp Kipfstuhl; Robert Mulvaney

Black carbon (BC) and other biomass-burning (BB) aerosols are critical components of climate forcing but quantification, predictive climate modeling, and policy decisions have been hampered by limited understanding of the climate drivers of BB and by the lack of long-term records. Prior modeling studies suggested that increased Northern Hemisphere anthropogenic BC emissions increased recent temperatures and regional precipitation, including a northward shift in the Inter-Tropical Convergence Zone (ITCZ). Two Antarctic ice cores were analyzed for BC and the longest record shows that the highest BC deposition during the Holocene occurred ~8-6k years before present in a period of relatively high austral burning season and low growing season insolation. Atmospheric transport modeling suggests South America (SA) as the dominant source of modern Antarctic BC and, consistent with the ice-core record, climate model experiments using mid-Holocene and preindustrial insolation simulate comparable increases in carbon loss due to fires in SA during the mid-Holocene. SA climate proxies document a northward shifted ITCZ and weakened SA Summer Monsoon (SASM) during this period, with associated impacts on hydroclimate and burning. A second Antarctic ice core spanning the last 2.5k years documents similar linkages between hydroclimate and BC, with the lowest deposition during the Little Ice Age characterized by a southerly shifted ITCZ and strengthened SASM. These new results indicate that insolation-driven changes in SA hydroclimate and BB, likely linked to the position of the ITCZ, modulated Antarctic BC deposition during most of the Holocene and suggests connections and feedbacks between future BC emissions and hydroclimate. Plain Language Summary Future anthropogenic-driven climate change may impact wildfires, yet predicting future changes is hampered by few long-term records of natural wildfires, particularly for the Southern Hemisphere. We document large variations in black carbon deposition during the past 14,000 years from an Antarctic ice core. Black carbon is a tracer for wildfires and a significant climate forcing agent. We show that black carbon in Antarctica closely followed Southern Hemisphere hydroclimate and strength of the South American Summer Monsoon. With future predictions showing significant low-latitude changes in precipitation under increased emissions, the climate-fire linkages presented here suggest future changes South American biomass burning.


Paleoceanography | 2017

The Role of African Dust in Atlantic Climate During Heinrich Events

Lisa N. Murphy; M. Goes; Amy C. Clement

Increased ice discharge in the North Atlantic is thought to cause a weakening, or collapse, of the Atlantic meridional overturning circulation (AMOC) during Heinrich events. Paleoclimate records indicate that these periods were marked by severe tropical aridity and dustiness. Although the driver of these events is still under debate, large freshwater input is necessary for climate models to simulate the magnitude, geographical extent, and abruptness of these events, indicating that they may be missing feedbacks. We hypothesize that the dust-climate feedback is one such feedback that has not been previously considered. Here we analyze the role of dust-climate feedbacks on the AMOC by parameterizing the dust radiative effects in an intermediate complexity model and consider uncertainties due to wind stress forcing and the magnitude of both atmospheric dust loading and freshwater hosing. We simulate both stable and unstable AMOC regimes by changing the prescribed wind stress forcing. In the unstable regime, additional dust loading during Heinrich events cools and freshens the North Atlantic and abruptly reduces the AMOC by 20% relative to a control simulation. In the stable regime, however, additional dust forcing alone does not alter the AMOC strength. Including both freshwater and dust forcing results in a cooling of the subtropical North Atlantic more comparable to proxy records than with freshwater forcing alone. We conclude that dust-climate feedbacks may provide amplification to Heinrich cooling by further weakening AMOC and increasing North Atlantic sea ice coverage.


Paleoceanography | 2012

Changes in the intermediate water mass formation rates in the global ocean for the Last Glacial Maximum, mid‐Holocene and pre‐industrial climates

Ilana Wainer; M. Goes; Lisa N. Murphy; Esther C. Brady

Collaboration


Dive into the Lisa N. Murphy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bette L. Otto-Bliesner

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David McGee

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Esther C. Brady

National Center for Atmospheric Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge