Lisa Oestereich
Bernhard Nocht Institute for Tropical Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lisa Oestereich.
The New England Journal of Medicine | 2014
Sylvain Baize; Delphine Pannetier; Lisa Oestereich; Toni Rieger; Lamine Koivogui; Barré Soropogui; Mamadou Saliou Sow; Sakoba Keita; Hilde De Clerck; Amanda Tiffany; Gemma Dominguez; Mathieu Loua; Alexis Traoré; Moussa Kolié; Emmanuel Roland Malano; Emmanuel Heleze; Anne Bocquin; Stéphane Mély; Hervé Raoul; Valérie Caro; Daniel Cadar; Martin Gabriel; Meike Pahlmann; Dennis Tappe; Jonas Schmidt-Chanasit; Benido Impouma; Abdoul Karim Diallo; Michel Van Herp; Stephan Günther
In March 2014, the World Health Organization was notified of an outbreak of a communicable disease characterized by fever, severe diarrhea, vomiting, and a high fatality rate in Guinea. Virologic investigation identified Zaire ebolavirus (EBOV) as the causative agent. Full-length genome sequencing and phylogenetic analysis showed that EBOV from Guinea forms a separate clade in relationship to the known EBOV strains from the Democratic Republic of Congo and Gabon. Epidemiologic investigation linked the laboratory-confirmed cases with the presumed first fatality of the outbreak in December 2013. This study demonstrates the emergence of a new EBOV strain in Guinea.
Antiviral Research | 2014
Lisa Oestereich; Anja Lüdtke; Stephanie Wurr; Toni Rieger; César Muñoz-Fontela; Stephan Günther
Outbreaks of Ebola hemorrhagic fever in sub-Saharan Africa are associated with case fatality rates of up to 90%. Currently, neither a vaccine nor an effective antiviral treatment is available for use in humans. Here, we evaluated the efficacy of the pyrazinecarboxamide derivative T-705 (favipiravir) against Zaire Ebola virus (EBOV) in vitro and in vivo. T-705 suppressed replication of Zaire EBOV in cell culture by 4log units with an IC90 of 110μM. Mice lacking the type I interferon receptor (IFNAR(-)(/)(-)) were used as in vivo model for Zaire EBOV-induced disease. Initiation of T-705 administration at day 6 post infection induced rapid virus clearance, reduced biochemical parameters of disease severity, and prevented a lethal outcome in 100% of the animals. The findings suggest that T-705 is a candidate for treatment of Ebola hemorrhagic fever.
Journal of Clinical Virology | 2015
Lorenzo Zammarchi; Giulia Stella; Antonia Mantella; Dario Bartolozzi; Dennis Tappe; Stephan Günther; Lisa Oestereich; Daniel Cadar; César Muñoz-Fontela; Alessandro Bartoloni; Jonas Schmidt-Chanasit
We report the first two cases of laboratory confirmed Zika virus (ZIKV) infections imported into Italy from French Polynesia. Both patients presented with low grade fever, malaise, conjunctivitis, myalgia, arthralgia, ankle oedema, and axillary and inguinal lymphadenopathy. One patient showed leukopenia with relative monocytosis and thrombocytopenia. The diagnosis was based on ZIKV seroconversion in both cases and on ZIKV RNA detection in one patient from acute serum sample. Sera from both patients exhibited cross-reactivity with dengue virus antigens. Our immunological analysis demonstrated that recovery from ZIKV infection is associated with restoration of normal numbers of immune cells in the periphery as well as with normal function of antigen-presenting cells. ZIKV is an emerging arbovirus, which has recently spread extensively in tourist destinations on several West Pacific islands. Returning viremic travelers may ignite autochthonous infections in countries like Italy, which are infested by Aedes albopictus, a suitable vector for ZIKV. The role of clinicians is crucial and includes early diagnosis and timely notification of public health authorities in order to quickly implement adequate focal vector control measurements.
PLOS Neglected Tropical Diseases | 2014
Lisa Oestereich; Toni Rieger; Melanie Neumann; Christian Bernreuther; Maria Lehmann; Susanne Krasemann; Stephanie Wurr; Petra Emmerich; Xavier de Lamballerie; Stephan Ölschläger; Stephan Günther
Background Mice lacking the type I interferon receptor (IFNAR−/− mice) reproduce relevant aspects of Crimean-Congo hemorrhagic fever (CCHF) in humans, including liver damage. We aimed at characterizing the liver pathology in CCHF virus-infected IFNAR−/− mice by immunohistochemistry and employed the model to evaluate the antiviral efficacy of ribavirin, arbidol, and T-705 against CCHF virus. Methodology/Principal Findings CCHF virus-infected IFNAR−/− mice died 2–6 days post infection with elevated aminotransferase levels and high virus titers in blood and organs. Main pathological alteration was acute hepatitis with extensive bridging necrosis, reactive hepatocyte proliferation, and mild to moderate inflammatory response with monocyte/macrophage activation. Virus-infected and apoptotic hepatocytes clustered in the necrotic areas. Ribavirin, arbidol, and T-705 suppressed virus replication in vitro by ≥3 log units (IC50 0.6–2.8 µg/ml; IC90 1.2–4.7 µg/ml). Ribavirin [100 mg/(kg×d)] did not increase the survival rate of IFNAR−/− mice, but prolonged the time to death (p<0.001) and reduced the aminotransferase levels and the virus titers. Arbidol [150 mg/(kg×d)] had no efficacy in vivo. Animals treated with T-705 at 1 h [15, 30, and 300 mg/(kg×d)] or up to 2 days [300 mg/(kg×d)] post infection survived, showed no signs of disease, and had no virus in blood and organs. Co-administration of ribavirin and T-705 yielded beneficial rather than adverse effects. Conclusions/Significance Activated hepatic macrophages and monocyte-derived cells may play a role in the proinflammatory cytokine response in CCHF. Clustering of infected hepatocytes in necrotic areas without marked inflammation suggests viral cytopathic effects. T-705 is highly potent against CCHF virus in vitro and in vivo. Its in vivo efficacy exceeds that of the current standard drug for treatment of CCHF, ribavirin.
Nature | 2016
Paula Ruibal; Lisa Oestereich; Anja Lüdtke; Beate Becker-Ziaja; David M. Wozniak; Romy Kerber; Miša Korva; Mar Cabeza-Cabrerizo; Joseph Akoi Bore; Fara Raymond Koundouno; Sophie Duraffour; Romy Weller; Anja Thorenz; Eleonora Cimini; Domenico Viola; Chiara Agrati; Johanna Repits; Babak Afrough; Lauren A. Cowley; Didier Ngabo; Julia Hinzmann; Marc Mertens; Inês Vitoriano; Christopher H. Logue; Jan Peter Boettcher; Elisa Pallasch; Andreas Sachse; Amadou Bah; Katja Nitzsche; Eeva Kuisma
Despite the magnitude of the Ebola virus disease (EVD) outbreak in West Africa, there is still a fundamental lack of knowledge about the pathophysiology of EVD. In particular, very little is known about human immune responses to Ebola virus. Here we evaluate the physiology of the human T cell immune response in EVD patients at the time of admission to the Ebola Treatment Center in Guinea, and longitudinally until discharge or death. Through the use of multiparametric flow cytometry established by the European Mobile Laboratory in the field, we identify an immune signature that is unique in EVD fatalities. Fatal EVD was characterized by a high percentage of CD4+ and CD8+ T cells expressing the inhibitory molecules CTLA-4 and PD-1, which correlated with elevated inflammatory markers and high virus load. Conversely, surviving individuals showed significantly lower expression of CTLA-4 and PD-1 as well as lower inflammation, despite comparable overall T cell activation. Concomitant with virus clearance, survivors mounted a robust Ebola-virus-specific T cell response. Our findings suggest that dysregulation of the T cell response is a key component of EVD pathophysiology.
The Lancet Global Health | 2017
Daouda Sissoko; Sophie Duraffour; Romy Kerber; Jacques Seraphin Kolié; Abdoul Habib Beavogui; Alseny Modet Camara; Géraldine Colin; Toni Rieger; Lisa Oestereich; Bernadett Pályi; Stephanie Wurr; Jeremie Guedj; Thi Huyen Tram Nguyen; Rosalind M. Eggo; Conall H. Watson; W. John Edmunds; Joseph Akoi Bore; Fara Raymond Koundouno; Mar Cabeza-Cabrerizo; Lisa L. Carter; Liana Eleni Kafetzopoulou; Eeva Kuisma; Janine Michel; Livia Victoria Patrono; Natasha Y. Rickett; Katrin Singethan; Martin Rudolf; Angelika Lander; Elisa Pallasch; Sabrina Bockholt
BACKGROUND By January, 2016, all known transmission chains of the Ebola virus disease (EVD) outbreak in west Africa had been stopped. However, there is concern about persistence of Ebola virus in the reproductive tract of men who have survived EVD. We aimed to use biostatistical modelling to describe the dynamics of Ebola virus RNA load in seminal fluid, including clearance parameters. METHODS In this longitudinal study, we recruited men who had been discharged from three Ebola treatment units in Guinea between January and July, 2015. Participants provided samples of seminal fluid at follow-up every 3-6 weeks, which we tested for Ebola virus RNA using quantitative real-time RT-PCR. Representative specimens from eight participants were then inoculated into immunodeficient mice to test for infectivity. We used a linear mixed-effect model to analyse the dynamics of virus persistence in seminal fluid over time. FINDINGS We enrolled 26 participants and tested 130 seminal fluid specimens; median follow up was 197 days (IQR 187-209 days) after enrolment, which corresponded to 255 days (228-287) after disease onset. Ebola virus RNA was detected in 86 semen specimens from 19 (73%) participants. Median duration of Ebola virus RNA detection was 158 days after onset (73-181; maximum 407 days at end of follow-up). Mathematical modelling of the quantitative time-series data showed a mean clearance rate of Ebola virus RNA from seminal fluid of -0·58 log units per month, although the clearance kinetic varied greatly between participants. Using our biostatistical model, we predict that 50% and 90% of male survivors clear Ebola virus RNA from seminal fluid at 115 days (90% prediction interval 72-160) and 294 days (212-399) after disease onset, respectively. We also predicted that the number of men positive for Ebola virus RNA in affected countries would decrease from about 50 in January 2016, to fewer than 1 person by July, 2016. Infectious virus was detected in 15 of 26 (58%) specimens tested in mice. INTERPRETATION Time to clearance of Ebola virus RNA from seminal fluid varies greatly between individuals and could be more than 13 months. Our predictions will assist in decision-making about surveillance and preventive measures in EVD outbreaks. FUNDING This study was funded by European Unions Horizon 2020 research and innovation programme, Directorate-General for International Cooperation and Development of the European Commission, Institut national de la santé et de la recherche médicale (INSERM), German Research Foundation (DFG), and Innovative Medicines Initiative 2 Joint Undertaking.
The Journal of Infectious Diseases | 2016
Lisa Oestereich; Toni Rieger; Anja Lüdtke; Paula Ruibal; Stephanie Wurr; Elisa Pallasch; Sabrina Bockholt; Susanne Krasemann; César Muñoz-Fontela; Stephan Günther
We studied the therapeutic potential of favipiravir (T-705) for Lassa fever, both alone and in combination with ribavirin. Favipiravir suppressed Lassa virus replication in cell culture by 5 log10 units. In a novel lethal mouse model, it lowered the viremia level and the virus load in organs and normalized levels of cell-damage markers. Treatment with 300 mg/kg per day, commenced 4 days after infection, when the viremia level had reached 4 log10 virus particles/mL, rescued 100% of Lassa virus–infected mice. We found a synergistic interaction between favipiravir and ribavirin in vitro and an increased survival rate and extended survival time when combining suboptimal doses in vivo.
Antiviral Research | 2015
Vincent Madelain; Lisa Oestereich; Frederik Graw; Thi Huyen Tram Nguyen; Xavier de Lamballerie; Stephan Günther; Jeremie Guedj
The polymerase inhibitor favipiravir is a candidate for the treatment of Ebola virus disease. Here, we designed a mathematical model to characterize the viral dynamics in 20 mice experimentally infected with Ebola virus, which were either left untreated or treated with favipiravir at 6 or 8days post infection. This approach provided estimates of kinetic parameters of Ebola virus reproduction, such as the half-life of productively infected cells, of about 6h, and the basic reproductive number which indicates that virus produced by a single infected cell productively infects about 9 new cells. Furthermore, the model predicted that favipiravir efficiently blocks viral production, reaching an antiviral effectiveness of 95% and 99.6% at 2 and 6days after initiation of treatment, respectively. The model could be particularly helpful to guide future studies evaluating favipiravir in larger animals.
Journal of Virology | 2015
Anja Lüdtke; Lisa Oestereich; Paula Ruibal; Stephanie Wurr; Elisa Pallasch; Sabrina Bockholt; Wing Hang Ip; Toni Rieger; Sergio Gómez-Medina; Carol Stocking; Estefanía Rodríguez; Stephan Günther; César Muñoz-Fontela
ABSTRACT The development of treatments for Ebola virus disease (EVD) has been hampered by the lack of small-animal models that mimick human disease. Here we show that mice with transplanted human hematopoetic stem cells reproduce features typical of EVD. Infection with Ebola virus was associated with viremia, cell damage, liver steatosis, signs of hemorrhage, and high lethality. Our study provides a small-animal model with human components for the development of EVD therapies.
The Journal of Infectious Diseases | 2016
Romy Kerber; Ralf Krumkamp; Boubacar Diallo; Anna Jaeger; Martin Rudolf; Simone Lanini; Joseph Akoi Bore; Fara Raymond Koundouno; Beate Becker-Ziaja; Erna Fleischmann; Kilian Stoecker; Silvia Meschi; Stéphane Mély; Edmund Newman; Fabrizio Carletti; Jasmine Portmann; Miša Korva; Svenja Wolff; Peter Molkenthin; Zoltan Kis; Anne Kelterbaum; Anne Bocquin; Thomas Strecker; Alexandra Fizet; Concetta Castilletti; Gordian Schudt; Lisa J. Ottowell; Andreas Kurth; Barry Atkinson; Marlis Badusche
Background. A unit of the European Mobile Laboratory (EMLab) consortium was deployed to the Ebola virus disease (EVD) treatment unit in Guéckédou, Guinea, from March 2014 through March 2015. Methods. The unit diagnosed EVD and malaria, using the RealStar Filovirus Screen reverse transcription–polymerase chain reaction (RT-PCR) kit and a malaria rapid diagnostic test, respectively. Results. The cleaned EMLab database comprised 4719 samples from 2741 cases of suspected EVD from Guinea. EVD was diagnosed in 1231 of 2178 hospitalized patients (57%) and in 281 of 563 who died in the community (50%). Children aged <15 years had the highest proportion of Ebola virus–malaria parasite coinfections. The case-fatality ratio was high in patients aged <5 years (80%) and those aged >74 years (90%) and low in patients aged 10–19 years (40%). On admission, RT-PCR analysis of blood specimens from patients who died in the hospital yielded a lower median cycle threshold (Ct) than analysis of blood specimens from survivors (18.1 vs 23.2). Individuals who died in the community had a median Ct of 21.5 for throat swabs. Multivariate logistic regression on 1047 data sets revealed that low Ct values, ages of <5 and ≥45 years, and, among children aged 5–14 years, malaria parasite coinfection were independent determinants of a poor EVD outcome. Conclusions. Virus load, age, and malaria parasite coinfection play a role in the outcome of EVD.