Lisa Wiggleton Guerrero
Centers for Disease Control and Prevention
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lisa Wiggleton Guerrero.
Virology | 2013
César G. Albariño; Trevor Shoemaker; Marina L. Khristova; Joseph F. Wamala; J.J. Muyembe; Stephen Balinandi; Alex Tumusiime; Shelley Campbell; Deborah Cannon; Aridth Gibbons; Éric Bergeron; Brian H. Bird; Kimberly A. Dodd; Christina F. Spiropoulou; Bobbie R. Erickson; Lisa Wiggleton Guerrero; Barbara Knust; Stuart T. Nichol; Pierre E. Rollin; Ute Ströher
In 2012, an unprecedented number of four distinct, partially overlapping filovirus-associated viral hemorrhagic fever outbreaks were detected in equatorial Africa. Analysis of complete virus genome sequences confirmed the reemergence of Sudan virus and Marburg virus in Uganda, and the first emergence of Bundibugyo virus in the Democratic Republic of the Congo.
The Journal of Infectious Diseases | 2015
Mike Flint; Christin H. Goodman; Scott W. Bearden; Dianna M. Blau; Brian R. Amman; Alison J. Basile; Jessica A. Belser; Eric Bergeron; Michael D. Bowen; Aaron C. Brault; Shelley Campbell; Ayan K. Chakrabarti; Kimberly A. Dodd; Bobbie R. Erickson; Molly M. Freeman; Aridth Gibbons; Lisa Wiggleton Guerrero; John D. Klena; R. Ryan Lash; Michael K. Lo; Laura K. McMullan; Gbetuwa Momoh; James L. Massally; Augustine Goba; Christopher D. Paddock; Rachael A. Priestley; Meredith Pyle; Mark Rayfield; Brandy J. Russell; Johanna S. Salzer
In August 2014, the Viral Special Pathogens Branch of the US Centers for Disease Control and Prevention established a field laboratory in Sierra Leone in response to the ongoing Ebola virus outbreak. Through March 2015, this laboratory tested >12 000 specimens from throughout Sierra Leone. We describe the organization and procedures of the laboratory located in Bo, Sierra Leone.
Virology | 2015
César G. Albariño; Lisa Wiggleton Guerrero; Michael K. Lo; Stuart T. Nichol; Jonathan S. Towner
Previous studies have demonstrated the potential application of reverse genetics technology in studying a broad range of aspects of viral biology, including gene regulation, protein function, cell entry, and pathogenesis. Here, we describe a highly efficient reverse genetics system used to generate recombinant Ebola virus (EBOV) based on a recent isolate from a human patient infected during the 2014-2015 outbreak in Western Africa. We also rescued a recombinant EBOV expressing a fluorescent reporter protein from a cleaved VP40 protein fusion. Using this virus and an inexpensive method to quantitate the expression of the foreign gene, we demonstrate its potential usefulness as a tool for screening antiviral compounds and measuring neutralizing antibodies.
Virology | 2015
César G. Albariño; Lisa Wiggleton Guerrero; Jessica R. Spengler; Luke S. Uebelhoer; Ayan K. Chakrabarti; Stuart T. Nichol; Jonathan S. Towner
Previous in vitro studies have demonstrated that Ebola and Marburg virus (EBOV and MARV) VP35 antagonize the host cell immune response. Moreover, specific mutations in the IFN inhibitory domain (IID) of EBOV and MARV VP35 that abrogate their interaction with virus-derived dsRNA, lack the ability to inhibit the host immune response. To investigate the role of MARV VP35 in the context of infectious virus, we used our reverse genetics system to generate two recombinant MARVs carrying specific mutations in the IID region of VP35. Our data show that wild-type and mutant viruses grow to similar titers in interferon deficient cells, but exhibit attenuated growth in interferon-competent cells. Furthermore, in contrast to wild-type virus, both MARV mutants were unable to inhibit expression of various antiviral genes. The MARV VP35 mutants exhibit similar phenotypes to those previously described for EBOV, suggesting the existence of a shared immune-modulatory strategy between filoviruses.
Emerging Infectious Diseases | 2014
Barbara Knust; Ute Ströher; Laura S. Edison; César G. Albariño; Jodi Lovejoy; Emilian Armeanu; Jennifer House; Denise Cory; Clayton Horton; Kathy L. Fowler; Jessica Austin; John Poe; Kraig E. Humbaugh; Lisa Wiggleton Guerrero; Shelley Campbell; Aridth Gibbons; Zachary Reed; Deborah Cannon; Craig Manning; Brett W. Petersen; Douglas Metcalf; Bret Marsh; Stuart T. Nichol; Pierre E. Rollin
Outbreaks can be prevented with strict biosecurity and microbiological monitoring.
PLOS Neglected Tropical Diseases | 2015
Marko Zivcec; Maureen G. Metcalfe; César G. Albariño; Lisa Wiggleton Guerrero; Scott D. Pegan; Christina F. Spiropoulou; Éric Bergeron
Crimean-Congo hemorrhagic fever (CCHF) is an often lethal, acute inflammatory illness that affects a large geographic area. The disease is caused by infection with CCHF virus (CCHFV), a nairovirus from the Bunyaviridae family. Basic research on CCHFV has been severely hampered by biosafety requirements and lack of available strains and molecular tools. We report the development of a CCHF transcription- and entry-competent virus-like particle (tecVLP) system that can be used to study cell entry and viral transcription/replication over a broad dynamic range (~4 orders of magnitude). The tecVLPs are morphologically similar to authentic CCHFV. Incubation of immortalized and primary human cells with tecVLPs results in a strong reporter signal that is sensitive to treatment with neutralizing monoclonal antibodies and by small molecule inhibitors of CCHFV. We used glycoproteins and minigenomes from divergent CCHFV strains to generate tecVLPs, and in doing so, we identified a monoclonal antibody that can prevent cell entry of tecVLPs containing glycoproteins from 3 pathogenic CCHFV strains. In addition, our data suggest that different glycoprotein moieties confer different cellular entry efficiencies, and that glycoproteins from the commonly used strain IbAr10200 have up to 100-fold lower ability to enter primary human cells compared to glycoproteins from pathogenic CCHFV strains.
Virology | 2016
César G. Albariño; Lisa Wiggleton Guerrero; Ayan K. Chakrabarti; Markus H. Kainulainen; Shannon Whitmer; Stephen R. Welch; Stuart T. Nichol
During the large outbreak of Ebola virus disease that occurred in Western Africa from late 2013 to early 2016, several hundred Ebola virus (EBOV) genomes have been sequenced and the virus genetic drift analyzed. In a previous report, we described an efficient reverse genetics system designed to generate recombinant EBOV based on a Makona variant isolate obtained in 2014. Using this system, we characterized the replication and fitness of 2 isolates of the Makona variant. These virus isolates are nearly identical at the genetic level, but have single amino acid differences in the VP30 and L proteins. The potential effects of these differences were tested using minigenomes and recombinant viruses. The results obtained with this approach are consistent with the role of VP30 and L as components of the EBOV RNA replication machinery. Moreover, the 2 isolates exhibited clear fitness differences in competitive growth assays.
Emerging Infectious Diseases | 2014
Hugo Razuri; Rafal Tokarz; Bruno M. Ghersi; Gabriela Salmón-Mulanovich; M. Claudia Guezala; Christian Albujar; A. Patricia Mendoza; Yeny O. Tinoco; Christopher Cruz; Maria Silva; Alicia Vásquez; Víctor Pacheco; Ute Ströher; Lisa Wiggleton Guerrero; Deborah Cannon; Stuart T. Nichol; David L. Hirschberg; W. Ian Lipkin; Daniel G. Bausch; Joel M. Montgomery
We investigated hantaviruses in rodents in the southern Amazon Basin of Peru and identified an Andes virus variant from Neacomys spinosus mice. This finding extends the known range of this virus in South America and the range of recognized hantaviruses in Peru. Further studies of the epizoology of hantaviruses in this region are warranted.
Emerging Infectious Diseases | 2018
Pragya D. Yadav; César G. Albariño; Dimpal A. Nyayanit; Lisa Wiggleton Guerrero; M. Harley Jenks; Prasad Sarkale; Stuart T. Nichol; Devendra T. Mourya
A virus isolated from a sick horse from India in 2008 was confirmed by next-generation sequencing analysis to be equine encephalosis virus (EEV). EEV in India is concerning because several species of Culicoides midge, which play a major role in EEV natural maintenance and transmission, are present in this country.
PLOS ONE | 2017
César G. Albariño; Lisa Wiggleton Guerrero; Harley M. Jenks; Ayan K. Chakrabarti; Thomas G. Ksiazek; Pierre E. Rollin; Stuart T. Nichol
Reston virus (family Filoviridae) is unique among the viruses of the Ebolavirus genus in that it is considered non-pathogenic in humans, in contrast to the other members which are highly virulent. The virus has however, been associated with several outbreaks of highly lethal hemorrhagic fever in non-human primates (NHPs), specifically cynomolgus monkeys (Macaca fascicularis) originating in the Philippines. In addition, Reston virus has been isolated from domestic pigs in the Philippines. To better understand virus spillover events and potential adaption to new hosts, the whole genome sequences of representative Reston virus isolates were obtained using a next generation sequencing (NGS) approach and comparative genomic analysis and virus fitness analyses were performed. Nine virus genome sequences were completed for novel and previously described isolates obtained from a variety of hosts including a human case, non-human primates and pigs. Results of phylogenetic analysis of the sequence differences are consistent with multiple independent introductions of RESTV from a still unknown natural reservoir into non-human primates and swine farming operations. No consistent virus genetic markers were found specific for viruses associated with primate or pig infections, but similar to what had been seen with some Ebola viruses detected in the large Western Africa outbreak in 2014–2016, a truncated version of VP30 was identified in a subgroup of Reston viruses obtained from an outbreak in pigs 2008–2009. Finally, the genetic comparison of two closely related viruses, one isolated from a human case and one from an NHP, showed amino acid differences in the viral polymerase and detectable differences were found in competitive growth assays on human and NHP cell lines.