Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisa Z. Scheifele is active.

Publication


Featured researches published by Lisa Z. Scheifele.


Science | 2014

Total Synthesis of a Functional Designer Eukaryotic Chromosome

Narayana Annaluru; Héloïse Muller; Leslie A. Mitchell; Sivaprakash Ramalingam; Giovanni Stracquadanio; Sarah M. Richardson; Jessica S. Dymond; Zheng Kuang; Lisa Z. Scheifele; Eric M. Cooper; Yizhi Cai; Karen Zeller; Neta Agmon; Jeffrey S. Han; Michalis Hadjithomas; Jennifer Tullman; Katrina Caravelli; Kimberly Cirelli; Zheyuan Guo; Viktoriya London; Apurva Yeluru; Sindurathy Murugan; Karthikeyan Kandavelou; Nicolas Agier; Gilles Fischer; Kun Yang; J. Andrew Martin; Murat Bilgel; Pavlo Bohutski; Kristin M. Boulier

Designer Chromosome One of the ultimate aims of synthetic biology is to build designer organisms from the ground up. Rapid advances in DNA synthesis has allowed the assembly of complete bacterial genomes. Eukaryotic organisms, with their generally much larger and more complex genomes, present an additional challenge to synthetic biologists. Annaluru et al. (p. 55, published online 27 March) designed a synthetic eukaryotic chromosome based on yeast chromosome III. The designer chromosome, shorn of destabilizing transfer RNA genes and transposons, is ∼14% smaller than its wild-type template and is fully functional with every gene tagged for easy removal. A synthetic version of yeast chromosome III with every gene tagged can substitute for the original. Rapid advances in DNA synthesis techniques have made it possible to engineer viruses, biochemical pathways and assemble bacterial genomes. Here, we report the synthesis of a functional 272,871–base pair designer eukaryotic chromosome, synIII, which is based on the 316,617–base pair native Saccharomyces cerevisiae chromosome III. Changes to synIII include TAG/TAA stop-codon replacements, deletion of subtelomeric regions, introns, transfer RNAs, transposons, and silent mating loci as well as insertion of loxPsym sites to enable genome scrambling. SynIII is functional in S. cerevisiae. Scrambling of the chromosome in a heterozygous diploid reveals a large increase in a-mater derivatives resulting from loss of the MATα allele on synIII. The complete design and synthesis of synIII establishes S. cerevisiae as the basis for designer eukaryotic genome biology.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Nuclear entry and CRM1-dependent nuclear export of the Rous sarcoma virus Gag polyprotein

Lisa Z. Scheifele; Rachel A. Garbitt; Jonathan D. Rhoads; Leslie J. Parent

The retroviral Gag polyprotein directs budding from the plasma membrane of infected cells. Until now, it was believed that Gag proteins of type C retroviruses, including the prototypic oncoretrovirus Rous sarcoma virus, were synthesized on cytosolic ribosomes and targeted directly to the plasma membrane. Here we reveal a previously unknown step in the subcellular trafficking of the Gag protein, that of transient nuclear localization. We have identified a targeting signal within the N-terminal matrix domain that facilitates active nuclear import of the Gag polyprotein. We also found that Gag is transported out of the nucleus through the CRM1 nuclear export pathway, based on observations that treatment of virus-expressing cells with leptomycin B resulted in the redistribution of Gag proteins from the cytoplasm to the nucleus. Internal deletion of the C-terminal portion of the Gag p10 region resulted in the nuclear sequestration of Gag and markedly diminished budding, suggesting that the nuclear export signal might reside within p10. Finally, we observed that a previously described matrix mutant, Myr1E, was insensitive to the effects of leptomycin B, apparently bypassing the nuclear compartment during virus assembly. Myr1E has a defect in genomic RNA packaging, implying that nuclear localization of Gag might be involved in viral RNA interactions. Taken together, these findings provide evidence that nuclear entry and egress of the Gag polyprotein are intrinsic components of the Rous sarcoma virus assembly pathway.


Genetics | 2008

Teaching Synthetic Biology, Bioinformatics and Engineering to Undergraduates: The Interdisciplinary Build-a-Genome Course

Jessica S. Dymond; Lisa Z. Scheifele; Sarah M. Richardson; Pablo A. Lee; Srinivasan Chandrasegaran; Joel S. Bader; Jef D. Boeke

A major challenge in undergraduate life science curricula is the continual evaluation and development of courses that reflect the constantly shifting face of contemporary biological research. Synthetic biology offers an excellent framework within which students may participate in cutting-edge interdisciplinary research and is therefore an attractive addition to the undergraduate biology curriculum. This new discipline offers the promise of a deeper understanding of gene function, gene order, and chromosome structure through the de novo synthesis of genetic information, much as synthetic approaches informed organic chemistry. While considerable progress has been achieved in the synthesis of entire viral and prokaryotic genomes, fabrication of eukaryotic genomes requires synthesis on a scale that is orders of magnitude higher. These high-throughput but labor-intensive projects serve as an ideal way to introduce undergraduates to hands-on synthetic biology research. We are pursuing synthesis of Saccharomyces cerevisiae chromosomes in an undergraduate laboratory setting, the Build-a-Genome course, thereby exposing students to the engineering of biology on a genomewide scale while focusing on a limited region of the genome. A synthetic chromosome III sequence was designed, ordered from commercial suppliers in the form of oligonucleotides, and subsequently assembled by students into ∼750-bp fragments. Once trained in assembly of such DNA “building blocks” by PCR, the students accomplish high-yield gene synthesis, becoming not only technically proficient but also constructively critical and capable of adapting their protocols as independent researchers. Regular “lab meeting” sessions help prepare them for future roles in laboratory science.


Journal of Virology | 2006

Importin-β Family Members Mediate Alpharetrovirus Gag Nuclear Entry via Interactions with Matrix and Nucleocapsid

Kristin L. Butterfield-Gerson; Lisa Z. Scheifele; Eileen P. Ryan; Anita K. Hopper; Leslie J. Parent

ABSTRACT The retroviral Gag polyprotein orchestrates the assembly and release of virus particles from infected cells. We previously reported that nuclear transport of the Rous sarcoma virus (RSV) Gag protein is intrinsic to the virus assembly pathway. To identify cis- and trans-acting factors governing nucleocytoplasmic trafficking, we developed novel vectors to express regions of Gag in Saccharomyces cerevisiae. The localization of Gag proteins was examined in the wild type and in mutant strains deficient in members of the importin-β family. We confirmed the Crm1p dependence of the previously identified Gag p10 nuclear export signal. The known nuclear localization signal (NLS) in MA (matrix) was also functional in S. cerevisiae, and additionally we discovered a novel NLS within the NC (nucleocapsid) domain of Gag. MA utilizes Kap120p and Mtr10p import receptors while nuclear entry of NC involves the classical importin-α/β (Kap60p/95p) pathway. NC also possesses nuclear targeting activity in avian cells and contains the primary signal for the import of the Gag polyprotein. Thus, the nucleocytoplasmic dynamics of RSV Gag depend upon the counterbalance of Crm1p-mediated export with two independent NLSs, each interacting with distinct nuclear import factors.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Transposon insertion site profiling chip (TIP-chip)

Sarah J. Wheelan; Lisa Z. Scheifele; Francisco Martinez-Murillo; Rafael A. Irizarry; Jef D. Boeke

Mobile elements are important components of our genomes, with diverse and significant effects on phenotype. Not only can transposons inactivate genes by direct disruption and shuffle the genome through recombination, they can also alter gene expression subtly or powerfully. Currently active transposons are highly polymorphic in host populations, including, among hundreds of others, L1 and Alu elements in humans and Ty1 elements in yeast. For this reason, we wished to develop a simple genome-wide method for identifying all transposons in any given sample. We have designed a transposon insertion site profiling chip (TIP-chip), a microarray intended for use as a high-throughput technique for mapping transposon insertions. By selectively amplifying transposon flanking regions and hybridizing them to the array, we can locate all transposons present in a sample. We have tested the TIP-chip extensively to map Ty1 retrotransposon insertions in yeast and have achieved excellent results in two laboratory strains as well as in evolved Ty1 high-copy strains. We are able to identify all of the theoretically detectable transposons in the FY2 lab strain, with essentially no false positives. In addition, we mapped many new transposon copies in the high-copy Ty1 strain and determined its Ty1 insertion pattern.


Journal of Virology | 2005

Detailed Mapping of the Nuclear Export Signal in the Rous Sarcoma Virus Gag Protein

Lisa Z. Scheifele; Eileen P. Ryan; Leslie J. Parent

ABSTRACT The Rous sarcoma virus (RSV) Gag polyprotein undergoes transient nuclear trafficking as an intrinsic part of the virus assembly pathway. Nuclear export of Gag is crucial for the efficient production of viral particles and is accomplished through the action of a leptomycin B (LMB)-dependent nuclear export signal (NES) in the p10 domain (L. Z. Scheifele, R. A. Garbitt, J. D. Rhoads, and L. J. Parent, Proc. Natl. Acad. Sci. USA 99:3944-3949, 2002). We have now mapped the nuclear export activity to the C-terminal portion of the p10 sequence and identified the four hydrophobic amino acids within this region that comprise a leucine-rich NES. Alteration of these hydrophobic residues resulted in the accumulation of Gag proteins within the nucleus and a budding defect greater than that obtained with LMB treatment of cells expressing the wild-type Gag protein (Scheifele et al., Proc. Natl. Acad. Sci. USA 99:3944-3949, 2002). In addition, export of Gag from the nucleus was found to be a rate-limiting step in virus-like particle production. Consistent with a role for the NES sequence in viral replication, this cluster of hydrophobic residues in p10 is conserved across a wide range of avian retroviruses. Furthermore, naturally occurring substitutions within this region in related viruses maintained nuclear export activity and remained sensitive to the activity of LMB. Using gain-of-function approaches, we found that the hydrophobic motif in p10 was sufficient to promote the nuclear export of a heterologous protein and was positionally independent within the Gag polyprotein. Finally, the export pathway was further defined by the ability of specific nucleoporin inhibitors to prevent the egress of Gag from the nucleus, thereby identifying additional cellular mediators of RSV replication.


Journal of Virology | 2007

Overlapping Roles of the Rous Sarcoma Virus Gag p10 Domain in Nuclear Export and Virion Core Morphology

Lisa Z. Scheifele; Scott P. Kenney; Tina M. Cairns; Rebecca C. Craven; Leslie J. Parent

ABSTRACT Nucleocytoplasmic shuttling of the Rous sarcoma virus (RSV) Gag polyprotein is an integral step in virus particle assembly. A nuclear export signal (NES) was previously identified within the p10 domain of RSV Gag. Gag mutants containing deletions of the p10 NES or mutations of critical hydrophobic residues at positions 219, 222, 225, or 229 become trapped within the nucleus and exhibit defects in the efficiency of virus particle release. To investigate other potential roles for Gag nuclear trafficking in RSV replication, we created viruses bearing NES mutant Gag proteins. Viruses carrying p10 mutations produced low levels of particles, as anticipated, and those particles that were released were noninfectious. The p10 mutant viruses contained approximately normal amounts of Gag, Gag-Pol, and Env proteins and genomic viral RNA (vRNA), but several major structural defects were found. Thin-section transmission electron microscopy revealed that the mature particles appeared misshapen, while the viral cores were cylindrical, horseshoe-shaped, or fragmented, with some particles containing multiple small, electron-dense aggregates. Immature virus-like particles produced by the expression of Gag proteins bearing p10 mutations were also aberrant, with both spherical and tubular filamentous particles produced. Interestingly, the secondary structure of the encapsidated vRNA was altered; although dimeric vRNA was predominant, there was an additional high-molecular-weight fraction. Together, these results indicate that the p10 NES domain of Gag is critical for virus replication and that it plays overlapping roles required for the nuclear shuttling of Gag and for the maintenance of proper virion core morphology.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Retrotransposon overdose and genome integrity

Lisa Z. Scheifele; Gregory J. Cost; Margaret L. Zupancic; Emerita Caputo; Jef D. Boeke

Yeast and mammalian genomes are replete with nearly identical copies of long dispersed repeats in the form of retrotransposons. Mechanisms clearly exist to maintain genome structure in the face of potential rearrangement between the dispersed repeats, but the nature of this machinery is poorly understood. Here we describe a series of distinct “retrotransposon overdose” (RO) lineages in which the number of Ty1 elements in the Saccharomyces cerevisiae genome has been increased by as much as 10 fold. Although these RO strains are remarkably normal in growth rate, they demonstrate an intrinsic supersensitivity to DNA-damaging agents. We describe the identification of mutants in the DNA replication pathway that enhance this RO-specific DNA damage supersensitivity by promoting ectopic recombination between Ty1 elements. Abrogation of normal DNA replication leads to rampant genome instability primarily in the form of chromosomal aberrations and confirms the central role of DNA replication accuracy in the stabilization of repetitive DNA.


Annals of The Entomological Society of America | 2013

Bacterial Interactions with Necrophagous Flies

Christopher Thompson; Rebecca S. Brogan; Lisa Z. Scheifele; David B. Rivers

ABSTRACT Animal remains represent ephemeral resources that provide nutrients to a wide range of organisms. On death, vertebrate carrion is immediately colonized with a variety of microorganisms (typically obligate or facultatively anaerobic bacteria from the air, from insects, or from the corpse itself), which produce odors through the breakdown of tissues, the alteration of volatile chemicals present in the environment, or both. Within minutes, certain necrophagous flies are attracted by these chemical signals, resulting in waves of oviposition and larviposition activity. Although there are certainly detrimental (pathogenic) bacteria in the milieu, there is significant evidence suggesting that the presence of bacteria in or on the corpse seems to aid in larval development and pupariation. This may be because of a change in larval nutrition, with the bacteria either being used as a food source themselves or making nutrients more available to larvae. Maggots also produce and secrete or excrete antimicrobial molecules that are effective in killing certain bacteria. It is unclear whether this is a defensive mechanism, a selective measure to enhance the survival of bacteria beneficial to the larva, or a combination of both. Significant research is still needed to fully appreciate the potential role that these bacteria—insect interactions have in conferring a competitive advantage for surviving in a carrion community.


Journal of Virology | 2003

Specificity of Plasma Membrane Targeting by the Rous Sarcoma Virus Gag Protein

Lisa Z. Scheifele; Jonathan D. Rhoads; Leslie J. Parent

ABSTRACT Budding of C-type retroviruses begins when the viral Gag polyprotein is directed to the plasma membrane by an N-terminal membrane-binding (M) domain. While dispersed basic amino acids within the M domain are critical for stable membrane association and consequent particle assembly, additional residues or motifs may be required for specific plasma membrane targeting and binding. We have identified an assembly-defective Rous sarcoma virus (RSV) Gag mutant that retains significant membrane affinity despite having a deletion of the fourth alpha-helix of the M domain. Examination of the mutant proteins subcellular distribution revealed that it was not localized to the plasma membrane but instead was mistargeted to intracytoplasmic membranes. Specific plasma membrane targeting was restored by the addition of myristate plus a single basic residue, by multiple basic residues, or by the heterologous hydrophobic membrane-binding domain from the cellular Fyn protein. These results suggest that the fourth alpha-helix of the RSV M domain promotes specific targeting of Gag to the plasma membrane, either through a direct interaction with plasma membrane phospholipids or a membrane-associated cellular factor or by maintaining the conformation of Gag to expose specific plasma membrane targeting sequences.

Collaboration


Dive into the Lisa Z. Scheifele's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leslie J. Parent

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Jessica S. Dymond

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey S. Han

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

Sarah J. Wheelan

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Eileen P. Ryan

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Eric M. Cooper

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge