Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liuyan Zhao is active.

Publication


Featured researches published by Liuyan Zhao.


Science | 2011

Visualizing Individual Nitrogen Dopants in Monolayer Graphene

Liuyan Zhao; Rui He; Kwang Taeg Rim; Theanne Schiros; Keun Soo Kim; Hui Zhou; Christopher Gutierrez; Subbaiah Chockalingam; Carlos J. Arguello; Lucia Palova; Dennis Nordlund; Mark S. Hybertsen; David R. Reichman; Tony F. Heinz; Philip Kim; Aron Pinczuk; George W. Flynn; Abhay Pasupathy

Nitrogen atoms that replace carbon atoms in the graphene lattice strongly modify the local electronic structure. In monolayer graphene, substitutional doping during growth can be used to alter its electronic properties. We used scanning tunneling microscopy, Raman spectroscopy, x-ray spectroscopy, and first principles calculations to characterize individual nitrogen dopants in monolayer graphene grown on a copper substrate. Individual nitrogen atoms were incorporated as graphitic dopants, and a fraction of the extra electron on each nitrogen atom was delocalized into the graphene lattice. The electronic structure of nitrogen-doped graphene was strongly modified only within a few lattice spacings of the site of the nitrogen dopant. These findings show that chemical doping is a promising route to achieving high-quality graphene films with a large carrier concentration.


Nano Letters | 2012

Connecting dopant bond type with electronic structure in n-doped graphene

Theanne Schiros; Dennis Nordlund; Lucia Palova; Deborah Prezzi; Liuyan Zhao; Keun Soo Kim; Ulrich Wurstbauer; Christopher Gutierrez; Dean M. DeLongchamp; Cherno Jaye; Daniel A. Fischer; Hirohito Ogasawara; Lars G. M. Pettersson; David R. Reichman; Philip Kim; Mark S. Hybertsen; Abhay Pasupathy

Robust methods to tune the unique electronic properties of graphene by chemical modification are in great demand due to the potential of the two dimensional material to impact a range of device applications. Here we show that carbon and nitrogen core-level resonant X-ray spectroscopy is a sensitive probe of chemical bonding and electronic structure of chemical dopants introduced in single-sheet graphene films. In conjunction with density functional theory based calculations, we are able to obtain a detailed picture of bond types and electronic structure in graphene doped with nitrogen at the sub-percent level. We show that different N-bond types, including graphitic, pyridinic, and nitrilic, can exist in a single, dilutely N-doped graphene sheet. We show that these various bond types have profoundly different effects on the carrier concentration, indicating that control over the dopant bond type is a crucial requirement in advancing graphene electronics.


Nano Letters | 2013

Local Atomic and Electronic Structure of Boron Chemical Doping in Monolayer Graphene

Liuyan Zhao; Mark Levendorf; Scott Goncher; Theanne Schiros; Lucia Palova; Amir Zabet-Khosousi; Kwang Taeg Rim; Christopher Gutierrez; Dennis Nordlund; Cherno Jaye; Mark S. Hybertsen; David R. Reichman; George W. Flynn; Jiwoong Park; Abhay Pasupathy

We use scanning tunneling microscopy and X-ray spectroscopy to characterize the atomic and electronic structure of boron-doped and nitrogen-doped graphene created by chemical vapor deposition on copper substrates. Microscopic measurements show that boron, like nitrogen, incorporates into the carbon lattice primarily in the graphitic form and contributes ~0.5 carriers into the graphene sheet per dopant. Density functional theory calculations indicate that boron dopants interact strongly with the underlying copper substrate while nitrogen dopants do not. The local bonding differences between graphitic boron and nitrogen dopants lead to large scale differences in dopant distribution. The distribution of dopants is observed to be completely random in the case of boron, while nitrogen displays strong sublattice clustering. Structurally, nitrogen-doped graphene is relatively defect-free while boron-doped graphene films show a large number of Stone-Wales defects. These defects create local electronic resonances and cause electronic scattering, but do not electronically dope the graphene film.


Nano Letters | 2012

Large Physisorption Strain in Chemical Vapor Deposition of Graphene on Copper Substrates

Rui He; Liuyan Zhao; Nicholas Petrone; Keun Soo Kim; Michael Roth; James Hone; Philip Kim; Abhay Pasupathy; Aron Pinczuk

Graphene single layers grown by chemical vapor deposition on single crystal Cu substrates are subject to nonuniform physisorption strains that depend on the orientation of the Cu surface. The strains are revealed in Raman spectra and quantitatively interpreted by molecular dynamics (MD) simulations. An average compressive strain on the order of 0.5% is determined in graphene on Cu(111). In graphene on Cu (100), MD simulations interpret the observed highly nonuniform strains.


Journal of the American Chemical Society | 2014

Segregation of sublattice domains in nitrogen-doped graphene.

Amir Zabet-Khosousi; Liuyan Zhao; Lucia Palova; Mark S. Hybertsen; David R. Reichman; Abhay Pasupathy; George W. Flynn

Atomic-level details of dopant distributions can significantly influence the material properties. Using scanning tunneling microscopy, we investigate the distribution of substitutional dopants in nitrogen-doped graphene with regard to sublattice occupancy within the honeycomb structure. Samples prepared by chemical vapor deposition (CVD) using pyridine on copper exhibit well-segregated domains of nitrogen dopants in the same sublattice, extending beyond 100 nm. On the other hand, samples prepared by postsynthesis doping of pristine graphene exhibit a random distribution between sublattices. On the basis of theoretical calculations, we attribute the formation of sublattice domains to the preferential attachment of nitrogen to the edge sites of graphene during the CVD growth process. The breaking of sublattice symmetry in doped graphene can have important implications in its electronic applications, such as the opening of a tunable band gap in the material.


Nano Letters | 2013

Substrate Level Control of the Local Doping in Graphene

Scott Goncher; Liuyan Zhao; Abhay Pasupathy; George W. Flynn

Graphene exfoliated onto muscovite mica is studied using ultrahigh vacuum scanning tunneling microscopy (UHV-STM) techniques. Mica provides an interesting dielectric substrate interface to measure the properties of graphene due to the ultraflat nature of a cleaved mica surface and the surface electric dipoles it possesses. Flat regions of the mica surface show some surface modulation of the graphene topography (24 pm) due to topographic modulation of the mica surface and full conformation of the graphene to that surface. In addition to these ultraflat regions, plateaus of varying size having been found. A comparison of topographic images and STS measurements show that these plateaus are of two types: one with characteristics of water monolayer formation between the graphene and mica, and the other arising from potassium ions trapped at the interfacial region. Immediately above the water induced plateaus, graphene is insulated from charge doping, while p-type doping is observed in areas adjacent to these water nucleation points. However, above and in the neighborhood of interfacial potassium ions, only n-type doping is observed. Graphene regions above the potassium ions are more strongly n-doped than regions adjacent to these alkali atom plateaus. Furthermore, a direct correlation of these Fermi level shifts with topographic features is seen without the random charge carrier density modulation observed in other dielectric substrates. This suggests a possible route to nanoscopic control of the local electron and hole doping in graphene via specific substrate architecture.


Nature Physics | 2016

A global inversion-symmetry-broken phase inside the pseudogap region of YBa2Cu3Oy

Liuyan Zhao; Carina Belvin; Ruixing Liang; D. A. Bonn; W. N. Hardy; N. P. Armitage; David Hsieh

The phase diagram of cuprate high-temperature superconductors features an enigmatic pseudogap region that is characterized by a partial suppression of low-energy electronic excitations. Polarized neutron diffraction Nernst effect, terahertz polarimetry and ultrasound measurements on YBa_2Cu_3O_y suggest that the pseudogap onset below a temperature T^∗ coincides with a bona fide thermodynamic phase transition that breaks time-reversal, four-fold rotation and mirror symmetries respectively. However, the full point group above and below T^∗ has not been resolved and the fate of this transition as T^∗ approaches the superconducting critical temperature T_c is poorly understood. Here we reveal the point group of YBa_2Cu_3O_y inside its pseudogap and neighbouring regions using high-sensitivity linear and second-harmonic optical anisotropy measurements. We show that spatial inversion and two-fold rotational symmetries are broken below T^∗ while mirror symmetries perpendicular to the Cu–O plane are absent at all temperatures. This transition occurs over a wide doping range and persists inside the superconducting dome, with no detectable coupling to either charge ordering or superconductivity. These results suggest that the pseudogap region coincides with an odd-parity order that does not arise from a competing Fermi surface instability and exhibits a quantum phase transition inside the superconducting dome.


Nature Materials | 2017

A charge density wave-like instability in a doped spin-orbit-assisted weak Mott insulator

Hao Chu; Liuyan Zhao; A. de la Torre; T. Hogan; Stephen D. Wilson; David Hsieh

Layered perovskite iridates realize a rare class of Mott insulators that are predicted to be strongly spin-orbit coupled analogues of the parent state of cuprate high-temperature superconductors. Recent discoveries of pseudogap, magnetic multipolar ordered and possible d-wave superconducting phases in doped Sr2IrO4 have reinforced this analogy among the single layer variants. However, unlike the bilayer cuprates, no electronic instabilities have been reported in the doped bilayer iridate Sr3Ir2O7. Here we show that Sr3Ir2O7 realizes a weak Mott state with no cuprate analogue by using ultrafast time-resolved optical reflectivity to uncover an intimate connection between its insulating gap and antiferromagnetism. However, we detect a subtle charge density wave-like Fermi surface instability in metallic electron doped Sr3Ir2O7 at temperatures (TDW) close to 200 K via the coherent oscillations of its collective modes, which is reminiscent of that observed in cuprates. The absence of any signatures of a new spatial periodicity below TDW from diffraction, scanning tunnelling and photoemission based probes suggests an unconventional and possibly short-ranged nature of this density wave order.


ACS Nano | 2016

Atomistic Interrogation of B–N Co-dopant Structures and Their Electronic Effects in Graphene

Theanne Schiros; Dennis Nordlund; Lucia Palova; Liuyan Zhao; Mark Levendorf; Cherno Jaye; David R. Reichman; Jiwoong Park; Mark S. Hybertsen; Abhay Pasupathy

Chemical doping has been demonstrated to be an effective method for producing high-quality, large-area graphene with controlled carrier concentrations and an atomically tailored work function. The emergent optoelectronic properties and surface reactivity of carbon nanostructures are dictated by the microstructure of atomic dopants. Co-doping of graphene with boron and nitrogen offers the possibility to further tune the electronic properties of graphene at the atomic level, potentially creating p- and n-type domains in a single carbon sheet, opening a gap between valence and conduction bands in the 2-D semimetal. Using a suite of high-resolution synchrotron-based X-ray techniques, scanning tunneling microscopy, and density functional theory based computation we visualize and characterize B-N dopant bond structures and their electronic effects at the atomic level in single-layer graphene grown on a copper substrate. We find there is a thermodynamic driving force for B and N atoms to cluster into BNC structures in graphene, rather than randomly distribute into isolated B and N graphitic dopants, although under the present growth conditions, kinetics limit segregation of large B-N domains. We observe that the doping effect of these BNC structures, which open a small band gap in graphene, follows the B:N ratio (B > N, p-type; B < N, n-type; B═N, neutral). We attribute this to the comparable electron-withdrawing and -donating effects, respectively, of individual graphitic B and N dopants, although local electrostatics also play a role in the work function change.


Physical Review B | 2016

Structural investigation of the bilayer iridate Sr_3Ir_2O_7

Tom Hogan; Lars Bjaalie; Liuyan Zhao; Carina Belvin; Xiaoping Wang; Chris G. Van de Walle; David Hsieh; Stephen D. Wilson

A complete structural solution of the bilayer iridate compound Sr_3Ir_2O_7 presently remains outstanding. Previously reported structures for this compound vary and all fail to explain weak structural violations observed in neutron scattering measurements as well as the presence of a net ferromagnetic moment in the basal plane. In this paper, we present single crystal neutron diffraction and rotational anisotropy second harmonic generation measurements unveiling a lower, monoclinic symmetry inherent to Sr_3Ir_2O_7. Combined with density functional theory, our measurements identify the correct structural space group as No. 15 (C2/c) and provide clarity regarding the local symmetry of Ir^(4+) cations within this spin-orbit Mott material.

Collaboration


Dive into the Liuyan Zhao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Hsieh

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rui He

Columbia University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hao Chu

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Darius Torchinsky

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge