Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lixi Jiang is active.

Publication


Featured researches published by Lixi Jiang.


The Plant Cell | 2005

VANGUARD1 Encodes a Pectin Methylesterase That Enhances Pollen Tube Growth in the Arabidopsis Style and Transmitting Tract

Lixi Jiang; Shu-Lan Yang; Li-Fen Xie; Ching San Puah; Xue-Qin Zhang; Wei-Cai Yang; Venkatesan Sundaresan; De Ye

In flowering plants, penetration of the pollen tube through stigma, style, and transmitting tract is essential for delivery of sperm nuclei to the egg cells embedded deeply within female tissues. Despite its importance in plant reproduction, little is known about the underlying molecular mechanisms that regulate the navigation of the pollen tube through the stigma, style, and transmitting tract. Here, we report the identification and characterization of an Arabidopsis thaliana gene, VANGUARD1 (VGD1) that encodes a pectin methylesterase (PME)-homologous protein of 595 amino acids and is required for enhancing the growth of pollen tubes in the style and transmitting tract tissues. VGD1 was expressed specifically in pollen grain and the pollen tube. The VGD1 protein was distributed throughout the pollen grain and pollen tube, including the plasma membrane and cell wall. Functional interruption of VGD1 reduced PME activity in the pollen to 82% of the wild type and greatly retarded the growth of the pollen tube in the style and transmitting tract, resulting in a significant reduction of male fertility. In addition, the vgd1 pollen tubes were unstable and burst more frequently when germinated and grown on in vitro culture medium, compared with wild-type pollen tubes. Our study suggests that the VGD1 product is required for growth of the pollen tube, possibly via modifying the cell wall and enhancing the interaction of the pollen tube with the female style and transmitting tract tissues.


The Plant Cell | 2003

TAPETUM DETERMINANT1 Is Required for Cell Specialization in the Arabidopsis Anther

Shu-Lan Yang; Li-Fen Xie; Hui-Zhu Mao; Ching San Puah; Wei-Cai Yang; Lixi Jiang; Venkatesan Sundaresan; De Ye

In flowering plants, pollen formation depends on the differentiation and interaction of two cell types in the anther: the reproductive cells, called microsporocytes, and somatic cells that form the tapetum. The microsporocytes generate microspores, whereas the tapetal cells support the development of microspores into mature pollen grains. Despite their importance to plant reproduction, little is known about the underlying genetic mechanisms that regulate the differentiation and interaction of these highly specialized cells in the anther. Here, we report the identification and characterization of a novel TAPETUM DETERMINANT1 (TPD1) gene that is required for the specialization of tapetal cells in the Arabidopsis anther. Analysis of the male-sterile mutant, tpd1, showed that functional interruption of TPD1 caused the precursors of tapetal cells to differentiate and develop into microsporocytes instead of tapetum. As a results, extra microsporocytes were formed and tapetum was absent in developing tpd1 anthers. Molecular cloning of TPD1 revealed that it encodes a small protein of 176 amino acids. In addition, tpd1 was phenotypically similar to excess microsporocytes1/extra sporogenous cells (ems1/exs) single and tpd1 ems1/exs double mutants. These data suggest that the TPD1 product plays an important role in the differentiation of tapetal cells, possibly in coordination with the EMS1/EXS gene product, a Leu-rich repeat receptor protein kinase.


Plant Physiology | 2005

Overexpression of TAPETUM DETERMINANT1 Alters the Cell Fates in the Arabidopsis Carpel and Tapetum via Genetic Interaction with EXCESS MICROSPOROCYTES1/EXTRA SPOROGENOUS CELLS

Shu-Lan Yang; Lixi Jiang; Ching San Puah; Li-Fen Xie; Xue-Qin Zhang; Li-Qun Chen; Wei-Cai Yang; De Ye

Previously, we reported that the TAPETUM DETERMINANT1 (TPD1) gene is required for specialization of tapetal cells in the Arabidopsis (Arabidopsis thaliana) anther. The tpd1 mutant is phenotypically identical to the excess microsporocytes1 (ems1)/extra sporogenous cells (exs) mutant. The TPD1 and EMS1/EXS genes may function in the same developmental pathway in the Arabidopsis anther. Here, we further report that overexpression of TPD1 alters the cell fates in the Arabidopsis carpel and tapetum. When TPD1 was expressed ectopically in the wild-type Arabidopsis carpel, the number of cells in the carpel increased significantly, showing that the ectopic expression of TPD1 protein could activate the cell division in the carpel. Furthermore, the genetic analysis showed that the activation of cell division in the transgenic carpel by TPD1 was dependent on EMS1/EXS, as it did not happen in the ems1/exs mutant. This result further suggests that TPD1 regulates cell fates in coordination with EMS1/EXS. Moreover, overexpression of TPD1 in tapetal cells also delayed the degeneration of tapetum. The TPD1 may function not only in the specialization of tapetal cells but also in the maintenance of tapetal cell fate.


Plant Physiology | 2012

The Effect of TRANSPARENT TESTA2 on Seed Fatty Acid Biosynthesis and Tolerance to Environmental Stresses during Young Seedling Establishment in Arabidopsis

Mingxun Chen; Zhong Wang; Yana Zhu; Zhilan Li; Nazim Hussain; Lijie Xuan; Wanli Guo; Guoping Zhang; Lixi Jiang

In plants, fatty acids (FAs) and FA-derived complex lipids are major carbon and energy reserves in seeds. They are essential components of cellular membranes and cellular signal or hormone molecules. Although TRANSPARENT TESTA2 (TT2) is well studied for its function in regulating proanthocyanidin biosynthesis in the seed coat, little attention has been given to its role in affecting seed FA accumulation and tolerance to environmental stresses. We demonstrate that the tt2 mutation remarkably increased the seed FA content, decreased seed weight, and altered the FA composition. The increase in FA content in the tt2 seeds was due to the relative decrease of seed coat proportion as well as the more efficient FA synthesis in the tt2 embryo. Microarray analysis revealed that tt2 mutation up-regulated a group of genes critical to FA biosynthesis and embryonic development. The mutation also altered the gene expressions that respond to stress. The microarray analysis discovered that the increase in FA accumulation of the tt2 seeds were accompanied by the significant up-regulation of FUSCA3, a transcriptional factor for embryonic development and FATTY ACID ELONGASE1, which catalyzes the elongation of FA chains. Moreover, lower seed protein accumulation during seed maturation also contributed to the increased seed FA accumulation in tt2 mutants. This study advances the understanding of the TT2 gene in seed FA accumulation and abiotic stresses during seed germination and seedling establishment.


Plant Journal | 2014

TRANSPARENT TESTA2 regulates embryonic fatty acid biosynthesis by targeting FUSCA3 during the early developmental stage of Arabidopsis seeds

Zhong Wang; Mingxun Chen; Tianlong Chen; Lijie Xuan; Zhilan Li; Xue Du; Longhua Zhou; Guoping Zhang; Lixi Jiang

TRANSPARENT TESTA2 (TT2) regulates the biosynthesis of proanthocyanidins in the seed coat of Arabidopsis. We recently found that TT2 also participates in inhibition of fatty acid (FA) biosynthesis in the seed embryo. However, the mechanism by which TT2 suppresses the accumulation of seed FA remains unclear. In this study, we show that TT2 is expressed in embryos at an early developmental stage. TT2 is directly bound to the regulatory region of FUSCA3 (FUS3), and mediates the expression of numerous genes in the FA biosynthesis pathway. These genes include BCCP2, CAC2, MOD1 and KASII, which encode proteins involved in the initial steps of FA chain formation, FAD2 and FAD3, which are responsible for FA desaturation, and FAE1, which catalyzes very-long-chain FA elongation. Loss of function of TT2 results in reduced expression of GLABRA2 but does not cause a significant reduction in the mucilage attached to the seed coats, which competes with FA for photosynthates. TT2 is expressed in both maternal seed coats and embryonic tissues, but proanthocyanidins are only found in wild-type seed coats and not in embryonic tissues. The amount of proanthocyanidins in the seed coat is negatively correlated with the amount of FAs in the embryo.


Agricultural Sciences in China | 2011

Comparison Between a Tetraploid Turnip and Its Diploid Progenitor (Brassica rapa L.): The Adaptation to Salinity Stress

Huabing Meng; Sisi Jiang; Shuijin Hua; Xian-yong Lin; Yuan-long Li; Wanli Guo; Lixi Jiang

Abstract Polyploidy is pursued in plant breeding programs due mainly to its ability to yield larger vegetative or reproductive organs. In controlled growth chamber experiments, a tetraploid turnip ( cv. Aijiaohuang, 4n) and its diploid progenitor ( cv. Aijiaohuang, 2n) were evaluated for their tolerance to salinity stress via investigations on a group of physiological parameters. The results indicate that the tetraploid turnip exhibit better adaptation to a high concentration salt medium (200 mmol L −1 ), as evidenced by a less-affected germination rate and a healthier morphological appearance at the seedling stage. Furthermore, an extension of salinity stress up to a certain period of time at the 5-7-leaf stage shows differences between the tetraploid turnip and its diploid progenitor. The former had a higher K + /Na + ratio in the roots, higher glutathione concentration and antioxidant activities in the leaves, and smaller reductions in photosynthetic capacity in terms of leaf chlorophyll content. Studies on the differences between an autopolyploid and its respective relative, from which the autopolyploid originated, in terms of their tolerance to salinity and/or other abiotic stresses, have remained rather limited. The comparison is interesting due to a homogenous genetic background.


Journal of Integrative Plant Biology | 2009

Drought‐Stimulated Activity of Plasma Membrane Nicotinamide Adenine Dinucleotide Phosphate Oxidase and Its Catalytic Properties in Rice

Zhuang-Qin Duan; Lei Bai; Zhiguang Zhao; Guo-Ping Zhang; Fangmin Cheng; Lixi Jiang; Kun-Ming Chen

The activity of plasma membrane (PM) nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and its catalytic properties in rice was investigated under drought stress conditions. Drought stress led to decreased leaf relative water content (RWC) and, as a result of drought-induced oxidative stress, the activities of antioxidant enzymes increased significantly. More interestingly, the intensity of applied water stress was correlated with increased production of H2O2 and O2 (-) and elevated activity of PM NADPH oxidase, a key enzyme of reactive oxygen species generation in plants. Histochemical analyses also revealed increased H2O2 and O2 (-) production in drought-stressed leaves. Application of diphenylene iodonium (DPI), an inhibitor of PM NADPH oxidase, did not alleviate drought-induced production of H2O2 and O2 (-). Catalysis experiments indicated that the rice PM NADPH oxidase was partially flavin-dependent. The pH and temperature optima for this enzyme were 9.8 and 40 degrees C, respectively. In addition, drought stress enhanced the activity under alkaline pH and high temperature conditions. These results suggest that a complex regulatory mechanism, associated with the NADPH oxidase-H2O2 system, is involved in the response of rice to drought stress.


Plant Growth Regulation | 2015

The alleviation of cadmium toxicity in oilseed rape (Brassica napus) by the application of salicylic acid

Essa Ali; Antony Maodzeka; Nazim Hussain; Imran Haider Shamsi; Lixi Jiang

To assess the potential role of salicylic acid (SA) in plants under cadmium (Cd) stress, a study was conducted on three different oilseed rape (Brassica napus) genotypes. Gas exchange parameters, photosynthetic pigments, antioxidant enzymes activities, mineral nutrients concentration, and ultrastructural analysis were carried out for assessment. Interestingly, cadmium treatment reduced gas exchange parameters, photosynthetic pigments, mineral elements [calcium (Ca), magnesium (Mg), and iron] and the activity of catalase (CAT) enzyme. Whereas, a pronounced increase was observed in malondialdehyde content and antioxidant enzymes, cadmium and zinc accumulation. Impressively, SA played its role as an alleviatory agent by reducing the damage to all parameters caused by Cd except internal CO2 concentration which was further decreased by SA. Even more, Cd and SA showed synergistic effects by increasing superoxide dismutase, peroxidases, ascorbate peroxidase, guaiacol peroxidase, glutathione reductase and decreasing CAT. Apart from affecting the enzyme activities of oilseed rape, both Cd and SA had the same inhibitory effects on Ca and Mg concentrations. Damage caused by Cd to chloroplast and other internal organelles were almost rectified by SA. Effective role of SA, in alleviating Cd toxicity, could be attributed to the SA-induced improvement of photosynthetic activities, enhancement of antioxidant enzymes activities, reduction in lipid peroxidation and Cd uptake. These findings reflect the possible role of SA as a potential inhibitor of cadmium toxicity by strengthening the internal immunity in oilseed rape.


Plant Physiology | 2014

TRANSPARENT TESTA8 Inhibits Seed Fatty Acid Accumulation by Targeting Several Seed Development Regulators in Arabidopsis

Mingxun Chen; Lijie Xuan; Zhong Wang; Longhua Zhou; Zhilan Li; Xue Du; Essa Ali; Guoping Zhang; Lixi Jiang

A maternal factor affects seed fatty acid biosynthesis and inhibits seed lipid accumulation by targeting seed development and down-regulating a group of genes critical to embryonic development. Fatty acids (FAs) and FA-derived complex lipids play important roles in plant growth and vegetative development and are a class of prominent metabolites stored in mature seeds. The factors and regulatory networks that control FA accumulation in plant seeds remain largely unknown. The role of TRANSPARENT TESTA8 (TT8) in the regulation of flavonoid biosynthesis and the formation of seed coat color is extensively studied; however, its function in affecting seed FA biosynthesis is poorly understood. In this article, we show that Arabidopsis (Arabidopsis thaliana) TT8 acts maternally to affect seed FA biosynthesis and inhibits seed FA accumulation by down-regulating a group of genes either critical to embryonic development or important in the FA biosynthesis pathway. Moreover, the tt8 mutation resulted in reduced deposition of protein in seeds during maturation. Posttranslational activation of a TT8-GLUCOCORTICOID RECEPTOR fusion protein and chromatin immunoprecipitation assays demonstrated that TT8 represses the activities of LEAFY COTYLEDON1, LEAFY COTYLEDON2, and FUSCA3, the critical transcriptional factors important for seed development, as well as CYTIDINEDIPHOSPHATE DIACYLGLYCEROL SYNTHASE2, which mediates glycerolipid biosynthesis. These results help us to understand the entire function of TT8 and increase our knowledge of the complicated networks regulating the formation of FA-derived complex lipids in plant seeds.


Plant and Cell Physiology | 2014

The Remodeling of Seedling Development in Response to Long-Term Magnesium Toxicity and Regulation by ABA–DELLA Signaling in Arabidopsis

Wanli Guo; Yuexi Cong; Nazim Hussain; Yu Wang; Zhongli Liu; Lixi Jiang; Zongsuo Liang; Kun-Ming Chen

Little information is available about signaling response to magnesium toxicity (MgT) in plants. This study presents the first evidence that abscisic acid (ABA) and DELLA proteins participate in signaling response to long-term MgT in Arabidopsis thaliana (Landsberg erecta). Morphological, physiological, and molecular characteristics of a wild-type and two Arabidopsis mutants, ABA-insensitive mutant abi1-1 and constitutive elevated GA response mutant quadruple-DELLA (DELLA-Q: gai-t6 rga-t2 rgl1-1 rgl2-1) were monitored under MgT and normal magnesium conditions. Two weeks of MgT treatment strongly influenced the growth of young plants, but growth inhibition of the DELLA-Q and abi1-1 mutants was less than that of the wild-type plants. Exogenous ABA further inhibited the growth of the DELLA-Q mutants, similar to that of the wild-type. Both ABA and MgT also promoted DELLA protein RGA accumulation in the nuclei. Transcriptional analysis supported these results and revealed that a complex signaling network has responded to MgT in Arabidopsis. DELLA enhancement, which depends on ABI1, contributed to the remodeling growth and development of young seedlings.

Collaboration


Dive into the Lixi Jiang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge