Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liyen Loh is active.

Publication


Featured researches published by Liyen Loh.


Nature Communications | 2014

Acquisition of innate-like microbial reactivity in mucosal tissues during human fetal MAIT-cell development

Edwin Leeansyah; Liyen Loh; Douglas F. Nixon; Johan K. Sandberg

Innate-like, evolutionarily conserved MR1-restricted mucosa-associated invariant T (MAIT) cells represent a large antimicrobial T-cell subset in humans. Here, we investigate the development of these cells in second trimester human fetal tissues. MAIT cells are rare and immature in the fetal thymus, spleen and mesenteric lymph nodes. In contrast, mature IL-18Rα+ CD8αα MAIT cells are enriched in the fetal small intestine, liver and lung. Independently of localization, MAIT cells express CD127 and Ki67 in vivo and readily proliferate in response to Escherichia coli in vitro. Maturation is accompanied by the gradual post-thymic acquisition of the PLZF transcription factor and the ability to produce IFNγ and IL-22 in response to bacteria in mucosa. Thus, MAIT cells acquire innate-like antimicrobial responsiveness in mucosa before exposure to environmental microbes and the commensal microflora. Establishment of this arm of immunity before birth may help protect the newborn from a range of pathogenic microbes.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Preexisting CD8+ T-cell immunity to the H7N9 influenza A virus varies across ethnicities

Sergio Quiñones-Parra; Emma J. Grant; Liyen Loh; Thi Nguyen; Kristy-Anne Campbell; Steven Y. C. Tong; Adrian Miller; Peter C. Doherty; Dhanasekaran Vijaykrishna; Jamie Rossjohn; Stephanie Gras; Katherine Kedzierska

Significance The severity of the novel H7N9 influenza A virus (IAV) and the lack of neutralizing antibodies raise real pandemic concerns. In this scenario, CD8+ T lymphocytes (CTLs) may provide a layer of protection against the H7N9 virus. Our study dissects the extent of preexisting CTL immunity with the potential to respond to H7N9. We identified conserved immunogenic peptides with the capacity to elicit robust CTL responses against any human IAV, including the H7N9 virus, as well as the mutations that abolish CTL recognition. The human leukocyte antigen class I molecules that present these peptides vary in prevalence depending on the ethnicity. Such analyses found that the Alaskan and Australian Indigenous people may be particularly vulnerable to the H7N9 influenza disease. The absence of preexisting neutralizing antibodies specific for the novel A (H7N9) influenza virus indicates a lack of prior human exposure. As influenza A virus–specific CD8+ T lymphocytes (CTLs) can be broadly cross-reactive, we tested whether immunogenic peptides derived from H7N9 might be recognized by memory CTLs established following infection with other influenza strains. Probing across multiple ethnicities, we identified 32 conserved epitopes derived from the nucleoprotein (NP) and matrix-1 (M1) proteins. These NP and M1 peptides are presented by HLAs prevalent in 16–57% of individuals. Remarkably, some HLA alleles (A*0201, A*0301, B*5701, B*1801, and B*0801) elicit robust CTL responses against any human influenza A virus, including H7N9, whereas ethnicities where HLA-A*0101, A*6801, B*1501, and A*2402 are prominent, show limited CTL response profiles. By this criterion, some groups, especially the Alaskan and Australian Indigenous peoples, would be particularly vulnerable to H7N9 infection. This dissection of CTL-mediated immunity to H7N9 thus suggests strategies for both vaccine delivery and development.


Nature Communications | 2015

Recovery from severe H7N9 disease is associated with diverse response mechanisms dominated by CD8+ T cells

Zhongfang Wang; Yanmin Wan; Chenli Qiu; Sergio Quiñones-Parra; Zhaoqin Zhu; Liyen Loh; Di Tian; Yanqin Ren; Yunwen Hu; Xiaoyan Zhang; Paul G. Thomas; Michael Inouye; Peter C. Doherty; Katherine Kedzierska; Jianqing Xu

The avian origin A/H7N9 influenza virus causes high admission rates (>99%) and mortality (>30%), with ultimately favourable outcomes ranging from rapid recovery to prolonged hospitalization. Using a multicolour assay for monitoring adaptive and innate immunity, here we dissect the kinetic emergence of different effector mechanisms across the spectrum of H7N9 disease and recovery. We find that a diversity of response mechanisms contribute to resolution and survival. Patients discharged within 2–3 weeks have early prominent H7N9-specific CD8+ T-cell responses, while individuals with prolonged hospital stays have late recruitment of CD8+/CD4+ T cells and antibodies simultaneously (recovery by week 4), augmented even later by prominent NK cell responses (recovery >30 days). In contrast, those who succumbed have minimal influenza-specific immunity and little evidence of T-cell activation. Our study illustrates the importance of robust CD8+ T-cell memory for protection against severe influenza disease caused by newly emerging influenza A viruses.


Nature Immunology | 2016

A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage

Hui-Fern Koay; Nicholas A. Gherardin; Anselm Enders; Liyen Loh; Laura K. Mackay; Catarina F Almeida; Brendan E. Russ; Claudia A. Nold-Petry; Marcel F. Nold; Sammy Bedoui; Zhenjun Chen; Alexandra J. Corbett; Sidonia B. G. Eckle; Bronwyn Meehan; Yves d'Udekem; Igor E. Konstantinov; Martha Lappas; Ligong Liu; Christopher C. Goodnow; David P. Fairlie; Jamie Rossjohn; Mark M. W. Chong; Katherine Kedzierska; Stuart P. Berzins; Gabrielle T. Belz; James McCluskey; Adam P. Uldrich; Dale I. Godfrey; Daniel G. Pellicci

Mucosal-associated invariant T cells (MAIT cells) detect microbial vitamin B2 derivatives presented by the antigen-presenting molecule MR1. Here we defined three developmental stages and checkpoints for the MAIT cell lineage in humans and mice. Stage 1 and stage 2 MAIT cells predominated in thymus, while stage 3 cells progressively increased in abundance extrathymically. Transition through each checkpoint was regulated by MR1, whereas the final checkpoint that generated mature functional MAIT cells was controlled by multiple factors, including the transcription factor PLZF and microbial colonization. Furthermore, stage 3 MAIT cell populations were expanded in mice deficient in the antigen-presenting molecule CD1d, suggestive of a niche shared by MAIT cells and natural killer T cells (NKT cells). Accordingly, this study maps the developmental pathway and checkpoints that control the generation of functional MAIT cells.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Human mucosal-associated invariant T cells contribute to antiviral influenza immunity via IL-18–dependent activation

Liyen Loh; Zhongfang Wang; Sneha Sant; Marios Koutsakos; Sinthujan Jegaskanda; Alexandra J. Corbett; Ligong Liu; David P. Fairlie; Jane Crowe; Jamie Rossjohn; Jianqing Xu; Peter C. Doherty; James McCluskey; Katherine Kedzierska

Significance Mucosal-associated invariant T (MAIT) cells are innate-like T lymphocytes with potent antibacterial reactivity. In this study, we investigated whether MAIT cells also contribute to immunity against influenza A viruses. Compared with those who succumbed, hospitalized patients who recovered from severe avian H7N9 influenza infection had higher numbers of MAIT cells. Subsequent in vitro analysis established that MAIT cells from healthy donors are indirectly activated by influenza infection via an IL-18–dependent (but not IL-12–dependent) mechanism requiring the involvement of CD14+ monocytes. Our findings highlight the potential for MAIT cells to promote protective immunity in human influenza. Mucosal-associated invariant T (MAIT) cells are innate-like T lymphocytes known to elicit potent immunity to a broad range of bacteria, mainly via the rapid production of inflammatory cytokines. Whether MAIT cells contribute to antiviral immunity is less clear. Here we asked whether MAIT cells produce cytokines/chemokines during severe human influenza virus infection. Our analysis in patients hospitalized with avian H7N9 influenza pneumonia showed that individuals who recovered had higher numbers of CD161+Vα7.2+ MAIT cells in peripheral blood compared with those who succumbed, suggesting a possible protective role for this lymphocyte population. To understand the mechanism underlying MAIT cell activation during influenza, we cocultured influenza A virus (IAV)-infected human lung epithelial cells (A549) and human peripheral blood mononuclear cells in vitro, then assayed them by intracellular cytokine staining. Comparison of influenza-induced MAIT cell activation with the profile for natural killer cells (CD56+CD3−) showed robust up-regulation of IFNγ for both cell populations and granzyme B in MAIT cells, although the individual responses varied among healthy donors. However, in contrast to the requirement for cell-associated factors to promote NK cell activation, the induction of MAIT cell cytokine production was dependent on IL-18 (but not IL-12) production by IAV-exposed CD14+ monocytes. Overall, this evidence for IAV activation via an indirect, IL-18–dependent mechanism indicates that MAIT cells are protective in influenza, and also possibly in any human disease process in which inflammation and IL-18 production occur.


Trends in Microbiology | 2008

Rates of HIV immune escape and reversion: implications for vaccination

Miles P. Davenport; Liyen Loh; Janka Petravic; Stephen J. Kent

HIV-1 mutates extensively in vivo to escape immune control by CD8+ T cells (CTLs). The CTL escape mutant virus might also revert back to wild-type upon transmission to new hosts if significant fitness costs are incurred by the mutation. Immune escape and reversion can be extremely fast if they occur very early after infection, whereas they are much slower when they begin later during infection. Immune escape presents a significant barrier to vaccination, because escape of vaccine-mediated immune responses could neutralise any benefits of vaccination. Here, we consider the dynamics of immune escape and reversion in vivo in natural infection, and suggest how understanding of this can be used to predict optimal vaccine targets and design vaccination strategies that maximise immune control. We predict that inducing synchronous, broad CTL by vaccination should limit the likelihood of viral escape from immune control.


Journal of Clinical Investigation | 2013

Differentiation and functional regulation of human fetal NK cells

Martin A. Ivarsson; Liyen Loh; Nicole Marquardt; Eliisa Kekäläinen; Lena Berglin; Niklas K. Björkström; Magnus Westgren; Douglas F. Nixon; Jakob Michaëlsson

The human fetal immune system is naturally exposed to maternal allogeneic cells, maternal antibodies, and pathogens. As such, it is faced with a considerable challenge with respect to the balance between immune reactivity and tolerance. Here, we show that fetal natural killer (NK) cells differentiate early in utero and are highly responsive to cytokines and antibody-mediated stimulation but respond poorly to HLA class I-negative target cells. Strikingly, expression of killer-cell immunoglobulin-like receptors (KIRs) did not educate fetal NK cells but rendered them hyporesponsive to target cells lacking HLA class I. In addition, fetal NK cells were highly susceptible to TGF-β-mediated suppression, and blocking of TGF-β signaling enhanced fetal NK cell responses to target cells. Our data demonstrate that KIR-mediated hyporesponsiveness and TGF-β-mediated suppression are major factors determining human fetal NK cell hyporesponsiveness to HLA class I-negative target cells and provide a potential mechanism for fetal-maternal tolerance in utero. Finally, our results provide a basis for understanding the role of fetal NK cells in pregnancy complications in which NK cells could be involved, for example, during in utero infections and anti-RhD-induced fetal anemia.


PLOS Pathogens | 2008

Vaccination and Timing Influence SIV Immune Escape Viral Dynamics In Vivo

Liyen Loh; Janka Petravic; C. Jane Batten; Miles P. Davenport; Stephen J. Kent

CD8+ cytotoxic T lymphocytes (CTL) can be effective at controlling HIV-1 in humans and SIV in macaques, but their utility is partly offset by mutational escape. The kinetics of CTL escape and reversion of escape mutant viruses upon transmission to MHC-mismatched hosts can help us understand CTL-mediated viral control and the fitness cost extracted by immune escape mutation. Traditional methods for following CTL escape and reversion are, however, insensitive to minor viral quasispecies. We developed sensitive quantitative real-time PCR assays to track the viral load of SIV Gag164–172 KP9 wild-type (WT) and escape mutant (EM) variants in pigtail macaques. Rapid outgrowth of EM virus occurs during the first few weeks of infection. However, the rate of escape plateaued soon after, revealing a prolonged persistence of WT viremia not detectable by standard cloning and sequencing methods. The rate of escape of KP9 correlated with levels of vaccine-primed KP9-specific CD8+ T cells present at that time. Similarly, when non-KP9 responder (lacking the restricting Mane-A*10 allele) macaques were infected with SHIVmn229 stock containing a mixture of EM and WT virus, rapid reversion to WT was observed over the first 2 weeks following infection. However, the rate of reversion to WT slowed dramatically over the first month of infection. The serial quantitation of escape mutant viruses evolving during SIV infection shows that rapid dynamics of immune escape and reversion can be observed in early infection, particularly when CD8 T cells are primed by vaccination. However, these early rapid rates of escape and reversion are transient and followed by a significant slowing in these rates later during infection, highlighting that the rate of escape is significantly influenced by the timing of its occurrence.


PLOS Pathogens | 2008

Control of Viremia and Prevention of AIDS following Immunotherapy of SIV-Infected Macaques with Peptide-Pulsed Blood

Robert De Rose; Caroline S. Fernandez; Miranda Z. Smith; C. Jane Batten; Sheilajen Alcântara; Vivienne Peut; Erik Rollman; Liyen Loh; Rosemarie D. Mason; Kim Wilson; Matthew Law; Amanda J. Handley; Stephen J. Kent

Effective immunotherapies for HIV are needed. Drug therapies are life-long with significant toxicities. Dendritic-cell based immunotherapy approaches are promising but impractical for widespread use. A simple immunotherapy, reinfusing fresh autologous blood cells exposed to overlapping SIV peptides for 1 hour ex vivo, was assessed for the control of SIVmac251 replication in 36 pigtail macaques. An initial set of four immunizations was administered under antiretroviral cover and a booster set of three immunizations administered 6 months later. Vaccinated animals were randomized to receive Gag peptides alone or peptides spanning all nine SIV proteins. High-level, SIV-specific CD4 and CD8 T-cell immunity was induced following immunization, both during antiretroviral cover and without. Virus levels were durably ∼10-fold lower for 1 year in immunized animals compared to controls, and a significant delay in AIDS-related mortality resulted. Broader immunity resulted following immunizations with peptides spanning all nine SIV proteins, but the responses to Gag were weaker in comparison to animals only immunized with Gag. No difference in viral outcome occurred in animals immunized with all SIV proteins compared to animals immunized against Gag alone. Peptide-pulsed blood cells are an immunogenic and effective immunotherapy in SIV-infected macaques. Our results suggest Gag alone is an effective antigen for T-cell immunotherapy. Fresh blood cells pulsed with overlapping Gag peptides is proceeding into trials in HIV-infected humans.


The Journal of Infectious Diseases | 2014

Cross-Reactive Influenza-Specific Antibody-Dependent Cellular Cytotoxicity in Intravenous Immunoglobulin as a Potential Therapeutic Against Emerging Influenza Viruses

Sinthujan Jegaskanda; Kirsten Vandenberg; Karen L. Laurie; Liyen Loh; Marit Kramski; Wendy R. Winnall; Katherine Kedzierska; Steven Rockman; Stephen J. Kent

BACKGROUND Intravenous immunoglobulin (IVIG) is a purified pool of human antibodies from thousands of donors that is used to prevent or treat primary immune deficiency, several infectious diseases, and autoimmune diseases. The antibodies that mediate antibody-dependent cellular cytotoxicity (ADCC) against heterologous influenza strains may be present in IVIG preparations. METHODS We tested 8 IVIG preparations prior to the 2009 H1N1 swine-origin influenza pandemic and 10 IVIG preparations made after 2010 for their ability to mediate influenza-specific ADCC. RESULTS ADCC mediating antibodies to A(H1N1)pdm09 hemagglutinin (HA) and neuraminidase (NA) were detected in IVIG preparations prior to the 2009-H1N1 pandemic. The HA-specific ADCC targeted both the HA1 and HA2 regions of A(H1N1)pdm09 HA and was capable of recognizing a broad range of HA proteins including those from recent avian influenza strains A(H5N1) and A(H7N9). The low but detectable ADCC recognition of A(H7N9) was likely due to rare individuals in the population contributing cross-reactive antibodies to IVIG. CONCLUSIONS IVIG preparations contain broadly cross-reactive ADCC mediating antibodies. IVIG may provide at least some level of protection for individuals at high risk of severe influenza disease, especially during influenza pandemics prior to the development of effective vaccines.

Collaboration


Dive into the Liyen Loh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janka Petravic

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miles P. Davenport

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge